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Abstract
An implantable retinal prosthesis has been developed to restore vision to patients who have been 
blinded by degenerative diseases that destroy photoreceptors. By electrically stimulating the 
surviving retinal cells, the damaged photoreceptors may be bypassed and limited vision can be 
restored. While this has been shown to restore partial vision, the understanding of how cells react 
to this systematic electrical stimulation is largely unknown. Better predictive models and a deeper 
understanding of neural responses to electrical stimulation is necessary for designing a successful 
prosthesis. In this work, a computational model of an epi-retinal implant was built and simulated, 
spanning multiple spatial scales, including a large-scale model of the retina and implant 
electronics, as well as underlying neuronal networks.

I. Introduction
Many people lose their sight due to degenerative diseases, such as macular degeneration or 
retinitis pigmentosa, which destroy photoreceptors over time. However, the retinal cells 
further downstream in their vision system remain viable. Artificial stimulation of these cells 
via systematic electrical stimulation through an epi-retinal implanted electrode array has 
been shown to create some vision in blind patients [1]. Clinical trials have been conducted to 
study the optimal stimulus parameters for such a system. The responses are based on the 
percept of the patient and have provided thresholds for the magnitude of current required to 
elicit a visual response, as well as described shapes and colors the subject sees [2]. These 
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results are undeniably interesting and patients are given the ability to see some objects again. 
However, the system is lacking a correlation between the stimulus and the affected neural 
networks. The stimulation does not restore the lower-level processing that occurs in the 
retinal layers, which accounts for some contrast-detection, color, brightness, etc. [3] If the 
stimulus could be tailored to selectively stimulate specific types of cells, then natural vision 
restoration may be possible.

Simulations of the system that incorporate the complexity of the neural networks and the 
stimulation electronics could be used for estimating the response and optimizing the 
stimulus towards this goal. Numerical simulation methods, such as finite difference 
methods, have proven useful in studying the path of current due to a given stimulus by 
discretizing a retinal tissue model based on the tissue conductivity and solving for the 
voltage throughout the model [15]. However, these simulations lack the complexity and 
nonlinearity of the underlying neural networks. Variations of cable equations have been used 
for studying the complex nonlinear behaviors of single cells and networks of cells, 
predicting how they will respond to stimulation [5]. However, they usually consider the cell 
to be in a homogeneous medium and do not consider an accurate representation of the 
extracellular fields.

Combining these two techniques, we create a multi-scale approach to modeling the affect of 
electrical stimulation on retinal tissue, taking advantage of the benefits of both systems. By 
including the complexity at the spatio-temporal scales of cellular networks, as well as the 
field calculations throughout the tissue and implant electronics, we essentially link the 
system level with the cellular level of the vision process in a single model. We apply a novel 
Admittance Method for the extracellular voltage calculations [4], and NEURON software 
[5] for calculating the effect at the cellular level, using cellular models based on 
Transmission Electron Microscopy (TEM) images of rabbit retina [6]. Software was written 
to link these simulation platforms, providing the Admittance Method voltage results as 
boundary conditions for the extracellular space in NEURON simulations. NEURON is then 
used to model the cellular activity. This model may serve as a platform for studying retinal 
prosthesis design at a high level of detail, with the overall goal of advancing epi-retinal 
prosthetic design to produce pseudo-natural vision to those who have lost their sight. In the 
following sections, the specifics of this model and how it may be used to simulate and study 
specific stimulation parameters are described.

II. Model
The multi-scale model consists of two main components, one describing the retina at a 
system level, and the other describing the cellular network level. Fig. 1 provides plots of 
both models in a diagram describing how they are correlated.

A. Large-Scale System Level
First, a large-scale model was constructed, containing the layers of the retina, the vitreous 
humor, and an implanted electrode array. The model was discretized into a 3-dimensional 
matrix of cubic voxels, each noted by a tag that is unique to a specific material type. The 
curvature of the retina and the depth of the layers were based on literature [7],[8]. The 
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resolution of the model is 5 µm per voxel and the size is 400×400×300 voxels. Each retinal 
layer was rippled to represent a more accurate representation of the boundary between 
layers. This was accomplished by varying the height of the layer due to a given 2D Gaussian 
plane. The height and width of the peaks in the plane were chosen based on approximate 
density and size of the cells inside each individual layer. After building the tissue model, a 
2×3 electrode array was added on top of the optic nerve layer in the retina, as shown in Fig. 
1. The electrodes were based on the Argus-II design by Second Sight [9]. They are 
cylindrical with a diameter of 200 µm and a depth of 10 µm. Each voxel in the model is 
described by its resistivity. Values for the resistivity of the retinal layers are as found in 
literature for low frequency (below 100 Hz), and the electrodes were approximated with the 
properties of platinum. The resistivity values for all tissues are shown in Table 1 [8].

B. Small-Scale Cellular Network
A computational model of a cellular network in the inner plexiform layer of the retina was 
built using highly anatomically and physiologically-accurate connectome data. This data is 
based on nanoscale Transmission Electron Microscopy (TEM) images of rabbit retina, 
augmented by picoscale ultrastructural reimaging [11],[14]. Thousands of observed 
connections between cells in a 250 µm diameter sub volume of the inner plexiform layer 
were quantified, providing accurate data for use in a computational model. For the purposes 
of this paper, sixty cone bipolar cells that communicate with two ON ganglion cells were 
selected to be modeled and are shown in Fig. 1. This 250 µm diameter model was 
considered to be placed in the proper layers of the large-scale tissue model, residing in the 
cell-body layers in the bipolar and ganglion cell layers, as well as the inner plexiform layer 
between them, in which most of the communication between the two layers occurs. By 
duplicating the cellular model, the entire ganglion, bipolar, and inner plexiform layers in this 
model were populated with cone bipolar and ganglion cells. The morphology of the cells 
was then compartmentalized for use with NEURON software, as discussed in the next 
section.

III. Simulation Methods
A. Admittance Method

To simulate the electric field magnitude throughout the tissue-level model, a time-stepping 
multi-resolution variant of the admittance method (AM) was used [8]. In this method, a 
matrix describing the admittance (G), or resistance, throughout the model is defined. The 
diagonal of the matrix defines the resistance at each node, while the surrounding values 
define the resistances between nodes, producing a sparse, diagonal matrix. The admittance is 
described as in Equation 1, in terms of the conductivity and the distance in the x, y, and z 
directions.

(1)
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A current vector (I) is then defined, with current values applied to whichever nodes contain 
a source. A voltage vector (V) can then be solved for using G and I in Equation 2. The linear 
system of equations is solved using a biconjugate gradient algorithm.

(2)

Prior to building and solving this system, a 3D multiresolution meshing algorithm is applied 
to the model. It maintains minimal resolution surrounding boundaries, and increases the 
voxel size further away where the fine resolution is unnecessary. For example, near the 
boundaries between retinal layers, the resolution would remain 5 µm per voxel, whereas 
towards the center of the layers, the resolution may be as low as 20 µm per voxel. To help 
illustrate this process, an example of a 2D slice of a model meshed with this algorithm is 
shown in Fig. 2. By decreasing the number of nodes and edges, the computational 
complexity of the system is decreased.

B. Connecting to NEURON
The response to the electrical stimulation at the neural network level is solved for using 
NEURON software. NEURON uses a compartmentalization system for solving for 
membrane and axial parameters. The model is split into compartments based on the type of 
neuronal branch and the change in radii. Each compartment is modeled as a tapered cylinder 
with a cable circuit model, describing the intracellular and membrane properties as circuital 
elements. The user can define the conductance, resistance, etc. for each compartment, as 
well as synaptic properties between cells. The connectome data used for this model was 
automatically converted to a NEURON-compatible format for describing the synaptic 
connections. Each synapse was then tested by applying a current clamp to the cell that is the 
source for each synapse and recording at the synaptic location on the target cell, ensuring 
there was a response. Also, a modified version of the built-in Hodgkin-Huxley mechanism 
was used to model the active mechanisms in the cells, in which the conductance of 
potassium, sodium, and calcium channels were specified. [5]

The results from the AM simulation were applied to this model as boundary conditions. 
NEURON has a built-in mechanism called “extracellular,” which allows for two extra layers 
of potentials and resistances to be added in series with each compartment [5]. One of these 
layers was utilized. 3D linear interpolation was used to estimate the voltage at the center of 
each compartment based on the surrounding eight nodes in the AM model. This voltage was 
set to the extracellular potential value in this model for each time step. A diagram describing 
the link between these tools is shown in Fig. 3. NEURON can then simulate the effect those 
voltages at each compartment have on the membrane and axial voltage, showing whether or 
not specific cells spike.

IV. Results
An example simulation was conducted to test the model. A single cycle of a sinusoidal 
current pulse with a magnitude of 10 µA and a frequency of 10 Hz was applied to one of the 
electrodes in the large-scale model shown in Fig. 1 over 20 time steps. The voltages 
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throughout the model were solved for using the admittance method. These voltages were 
then used to calculate the electric field in the x, y, and z directions by taking the ratio of the 
change in voltage and the change in distance in each respective direction. The magnitude of 
the electric field in the model for each step can then be solved for using Equation 3. A 2D 
slice of the electric field magnitude at the location of the stimulation at one time step is 
shown in Fig. 4.

(3)

The voltage results were interpolated to produce an extracellular voltage value for each 
compartment in the NEURON model for the ON ganglion and bipolar network. A 
NEURON simulation was run, producing a membrane voltage value for every compartment 
at every millisecond. A plot showing the resulting membrane voltage for 1, 3, and 5 
milliseconds after the sinusoidal pulse stimulation on a ganglion cell and a bipolar cell are 
shown in Fig. 4. The compartments are plotted as cylinders, which are color-coded based on 
the membrane voltage. Blue is the resting voltage defined as −60 mV and red is a voltage 
above +20 mV.

V. Discussion
This multi-scale computational model for a retinal prosthetic is just one step towards 
advancing the prosthesis design. It can serve as a testbench for testing many different 
parameters, such as the effect of the location of the ground or firing electrodes, stimulus 
magnitude or shape, etc. One specific application that is currently being pursued is 
optimizing the stimulus to stimulate certain types of cells. This directly applies to the goal of 
mimicking natural vision. Driving color percepts will require differentially stimulating 
surviving midget pathways previously linked to a CNS color network. Modeling such 
networks will, in turn, require access to primate or human connectomes. If a person is in 
bright light during the day, mostly circuits involving cones would need to be stimulated, and 
mostly those with rods in the case of less lighting [3]. This will require applying more 
complex channel mechanisms to describe the frequency dependence of specific cell types 
[10], and further research for deciding on the choice of stimuli that may elicit a response in a 
desired cell type, but not others.

The model can also be expanded to include more interesting neural circuits that have been 
observed during the connectome research used to build the neural network models. There 
are far more circuits than ON-ganglion cell networks that can be incorporated [11]. There is 
feedforward and feedback inhibition, electrical coupling between bipolar cells, sheets of 
amacrine cells, etc. In addition, the cells shown and discussed that are part of this 
connectome model do not include axons. These may be added to the computational model 
since they are likely the location of extracellular electrical stimulation. More spatial scales 
can be integrated as well, including smaller scales down to the molecular level for 
describing the synapses and channel mechanisms with even higher complexity. It has been 
shown that small changes at the molecular level can have an impact on the neural-level 
reaction to electrical activity [12]. Through these modifications, a highly accurate model for 
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studying many different research topics involving circuitry in the retina may be studied. For 
example, variations in system performance induced by pathologic network remodeling [13] 
can be assessed by comparison to this normal retinal framework. This approach can be 
extended to neuropathologies in general.

The model described in this paper combines two spatio-temporal scales of retina that are 
prevalent in literature. Linking them creates a simulation tool that will hopefully prove 
useful across multiple disciplines, in understanding the interaction between electric fields 
and tissue reaction, as well as the underlying electrophysiological phenomena.
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Figure 1. 
Diagram of multi-scale model, including (a) 3D plot of the discretized model of the retina 
with an electrode array and (b) top and side-view plots of the morphology of a neural 
network considered for simulation, including two ON ganglion cells and 60 cone bipolar 
cells.
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Figure 2. 
Example 2D slice of a meshed model [4], including (a) an unmeshed slice of a model, using 
uniform cubic voxels, and (b) the same model after applying the multiresolution meshing 
algorithm with maximum size of 8 voxels per cell.
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Figure 3. 
Diagram of the link between the admittance method results and NEURON. An extracellular 
voltage for each compartment (V) is estimated by 3D linear interpolation of the voltages at 
the nearest surrounding nodes from the admittance method simulation results.
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Figure 4. 
Simulation results. (a) Reference 2D slice, (b) Electric field magnitude at one time step 
during an admittance method simulation, (c–e) Color-coded membrane potential on a single 
ganglion and bipolar cell at 1, 3, and 5 milliseconds, respectively.
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Table I

Tissue Resistivites

Tissue Resistivity (Ω-m)

Photoreceptors 50.50

Outer Nuclear Layer 60.00

Outer Plexiform Layer 70.00

Inner Nuclear Layer 65.00

Inner Plexiform Layer 18.00

Ganglion Cell Layer 70.00

Bipolar Cell Layer 70.00
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