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a b s t r a c t

Connectomics is a strategy for mapping complex neural networks based on high-speed automated
electron optical imaging, computational assembly of neural data volumes, web-based navigational tools
to explore 1012e1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to
convert images into rich networks with cellular metadata. These collections of network data and asso-
ciated metadata, analyzed using tools from graph theory and classification theory, can be merged with
classical systems theory, giving a more completely parameterized view of how biologic information
processing systems are implemented in retina and brain. Networks have two separable features: to-
pology and connection attributes. The first findings from connectomics strongly validate the idea that the
topologies of complete retinal networks are far more complex than the simple schematics that emerged
from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal
inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification;
exposing the complex geometric rules for inserting different cells into a shared network; revealing
unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting
selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the
highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the un-
derlying principles of connectomics are readily transferrable to non-neural cell complexes and provide
new contexts for assessing intercellular communication.

! 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
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1. Connectomics

A new field like connectomics brings with it much uncertainty,
contention and new terminologies. The uncertainly derives in part
from the fact that connectomics blends newmethods (fast electron
optical imaging, image processing algorithms, dataset assembly
methods, database architectures, hardware configurations) and
new interpretive frameworks (graph theory, computational
complexity theory, classification theory). Contention arises in part
from concerns that claims of improved network analysis may be
overstated; that discovery may not reasonably scale with cost; and
that some theoretical underpinnings are disputed.

As the field is not mature, many neuroscientists have opinions
on its merits and how its discourses ought to be framed. A recent
issue of Nature Methods (Volume 10, No 6, June 2013) contains
many of these debates and they are not repeated here except to
note that the arguments for and against connectomics are elegantly
summarized byMorgan and Lichtman (2013). However, this review
is not nor is it intended to be balanced. Rather it presents our
experience with connectomics technology and discovery. Finally,
graph theory, classification theory, electron optics and computa-
tional management of large datasets all involve unfamiliar con-
ceptual frameworks and terminologies. This review is not intended
to remedy understanding of all those areas, but will provide di-
rections to the primary literature, textbooks and technical over-
views. The review formally ends at Section 3. Sections 4.1e4.3
provides a detailed list of critical definitions and references. We
encourage the reader to refer to them as needed. Sections 4.5 and
4.6 provide deeper explorations of network theory and classifica-
tion forming the underpinning of modern connectomics, including
arguments supporting the essential role of connectomics in
achieving complete understanding of retinal networks.

1.1. Introduction

A connectome is a complete graph of a neural network. In prin-
ciple, it is not an approximation or even a statistical average. It is a
comprehensive list of everyconnection in a definedneural region. In
practice, no studies have achieved this completeness, but unlike

previous anatomical efforts, the goal is clear and the technical path
straightforward. We expect completeness from community efforts,
not fromone lab. Connectomics efforts includemacroscalestudies of
connectivityacross thebrain (Marcus et al., 2011; Sporns et al., 2005;
van den Heuvel and Sporns, 2011), mesoscale optical studies of
connections between defined brain regions (Kleinfeld et al., 2011;
Oberlaender et al., 2011), as well as nanoscale electron optical
studies of synaptic connectivity, e.g. the vertebrate retina (Anderson
et al., 2011b; Briggman et al., 2011). Fine-scale, ultrastructural con-
nectome assembly has become possible due to high-speed auto-
mated electron optical imaging, including scanning electron
microscope (SEM) and transmission electron microscope (TEM)
imaging. Connectome analysis has become possible due to the
development of large-scale annotation and database mining tools
such as Viking and Connectome Viz (Anderson et al., 2011a).

1.2. Connectomics versus legacy anatomy

Why do we need a new approach to ultrastructural connectivity
analysis at all? Don’t we already know all the fundamental net-
works of retina? The answer to that is: No (Marc et al., 2012a;
Anderson et al., 2011a: Lauritzen et al., 2012a,b; Briggman et al.,
2011). We do not even really know if we have classified all retinal
neurons, including bipolar, amacrine and ganglion cells and it is
clear from new cell-specific genetic techniques that even well-
known cells may have surprising roles in vision (Beier et al.,
2013; Huberman and Niell, 2011; Rivlin-Etzion et al., 2011). So
what is wrong with legacy analyses using traditional electron mi-
croscopy? Basically, legacy anatomy is ponderously slow and
limited by the capacity of a single human observer to select and
capture an image. Given the proliferation of new genetic models
and new understanding of pathologic rewiring in the retina (Jones
et al., 2011, 2003), high throughput ultrastructure is an essential
advance. Previous TEM montaging efforts produced only arrays of
single images for humans to track as stacks of photographs or low
resolution digital files. For neuroscience, this meant that legacy
ultrastructural anatomy, which (albeit heroic in scope) actually
delivered only a broad-brush concepts and only fragments of
retinal networks at best (Calkins and Sterling, 1996, 2007; Calkins
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et al., 1998; Klug et al., 2003; Kolb and Famiglietti, 1974b; Kolb and
Nelson, 1993; Stevens et al., 1980; Strettoi et al., 1992). That said,
these studies discovered the baseline network for understanding
signal flow in the retina. TEM studies of AII amacrine cells (ACs)
described an architecture that still cannot be explained by or pre-
dicted from physiological data. However, none of these original
TEM data have been accessioned, in contrast to genetic data. From
the user perspective, previous ultrastructure resembles fine art: a
collection of uncurated, low-resolution halftone journal images,
with no primary data or metadata available. Connectomics changes
that by allowing public access to all raw and processed TEM data as
well as metadata.

2. Creating connectomes

2.1. Connectome samples

Connectomics samples use conventional TEM fixation with
mixed aldehydes, osmium en bloc staining and optional en bloc
uranyl acetate for electron imaging. The optimal method at present
uses conventional glutaraldehyde fixation, e.g. many Karnovsky’s
variants, with light osmium post-staining. A variety of methods can
be used to enhance TEM contrast for digital capture, such as
ferrocyanide staining, but caution needs to be used. Such methods
function by depositing metal atoms (e.g. osmium, iron) on the
surfaces of endogenous proteins, lipids and DNA and these atoms
occlude antibody access for immunocytochemistry. Only removal
of osmium is technically feasible at present and even that requires
delicate management of oxidative deosmication. Iron cannot be
removed without extensive sample damage. As one key goal in
connectomics is the fusion of TEM and small molecule immuno-
cytochemistry targeting endogenous signals (Marc and Liu, 2000)
or exogenous probes such as the channel permeant organic ion 1-
amino-4-guanidobutane (AGB) (Anderson et al., 2011b, 2009), we
avoid use of ferrocyanide. Briggman et al. (2011) and Bock et al.
(2011) fused optical calcium imaging with ultrastructure to iden-
tify neuronal subsets. New genetic markers that produce electron
dense deposits, essentially a TEM “GFP” are now available (Gaietta
et al., 2002; Hoffmann et al., 2010; Lichtman and Smith, 2008; Shu
et al., 2011). In any case, complete connectomics requires molecular
markers (Anderson et al., 2011b, 2009; Jones et al., 2011; Jones et al.,
2003; Marc and Liu, 2000; Micheva and Bruchez, 2011; Micheva
et al., 2010; Micheva and Smith, 2007).

Arguably each connectomics group has cogent reasons for using
different imaging platforms and comparisons of performance have
been published (Anderson et al., 2009). Our reasons for using ATEM
are simple. It requires no new hardware. ATEM is, by far, the highest
resolution technology available and is the only method that can
unambiguously map andmeasure all synapses and gap junctions. It
is the only flexible re-imaging technology. Finally, it is the only
technology proven to be compatible with intrinsic molecular
markers.

2.2. Connectome sectioning

The next step in connectomics is serial sectioning. There are
three basic technologies under exploration at present. Ablation
methods use either physical sectioning with an automated micro-
tome, such as in vacuo serial block-face (SBF) sectioning (Briggman
and Denk, 2006; Denk and Horstmann, 2004), or surface ablation
via in vacuo ion beam milling (Knott et al., 2008), followed by
scanning electron microscope (SEM) or scanning TEM (STEM) im-
aging of secondary electrons (surface-backscattered electrons).
Ablation techniques require very thin sections since secondary
electrons are essentially surface reflections of the sample. However,

both SEM and STEM have limited resolution because the electron
beam size can only be reduced to nanometer scale widths, and
acquisition times can be quite long for large sample fields. Ablation
methods are also incompatible with molecular markers, so far.
However, these are superb methods for wide-field connectomics.
Their biggest limitation has been their relatively poor lateral res-
olution which prevents reliable visualization of gap junctions and
validated quantitation of synapses.

Manual ultramicrotomy using existing equipment is a viable
option to an expensive specialized platform such as an ablation
system (Anderson et al., 2011b, 2009; Bourne and Harris, 2011).
Human microtomists can produce serial sections ranging from
hundreds to thousands with minimal error far faster than TEM
acquisition time. Sections are placed on standard low electron-
contrast monomolecular films, followed by conventional staining
and automated TEM (ATEM) imaging (Anderson et al., 2011b,
2009). Primary electron projection images of sections, optimally
50e70 nm thick, form images that can be used as 2D pages in a 3D
volume, or even assembled as true 3D datasets. We typically place
1e3 sections on a grid to maximize the security of a series during
grid handling (staining, storing, retrieving, imaging, restoring them
to storage). In addition, intercalated thin sections are placed on
slides for computational molecular phenotyping every 20e30 TEM
sections, permitting the insertion of molecular data into the con-
nectome (Figs. 1 and 2).

Automated sectioning onto electron dense Kapton"
films has

also been developed for STEM imaging (Kleinfeld et al., 2011).
Hopefully that technology will advance to the point of enabling
more efficient use of existing TEMs by using electron-transparent
films. At present the approach appears too expensive for wide-
spread adoption. SBF and ion beam milling enable preregistration
of image fields, which is a nontrivial but achievable computational
operation (Tasdizen et al., 2010) that manual sectioning and im-
aging requires.

2.3. ATEM imaging

Each slice of a connectome volume is composed of>1000 image
tiles (Figs. 2 and 3) and total image storage for datasets (Anderson
et al., 2011a, 2011b, 2009) can range from z10 terabytes (Tb) to
>1000 Tb. This means that live display of connectomes must span
large arrays of data drives. The size of a dataset is defined by a
canonical field or volume (Anderson et al., 2011b, 2009) and by the
resolution required to detect critical features such as gap junctions
and synapses. In practice, this sets the resolution at 2 nm, not 10 nm
as suggested by Kleinfeld et al. (2011). We selected 2 nm explicitly
because it allows mapping all retinal cells and all their synapses
(Anderson et al., 2009). But, even with 2 nm resolution, validation
of some gap junctions and quantitation of small synapses still de-
mands high resolution re-imaging (e.g. 0.3 nm), often with gonio-
metric tilt. Only TEM can currently deliver this performance.
Sections are imaged in a grid patternwith roughly 15% edge overlap
using a JEOL JEM 1400 TEM and a Gatan Ultrascan phosphor-
imaging camera (Anderson et al., 2011a, 2011b, 2009). In the rabbit
retinal connectome RC1 (Anderson et al., 2011b) each image slice
(the digital transform of a physical section) contains a canonical
field of 0.243 mm diameter and, at a resolution of 2.18 nm/pixel,
and requires 950e1100 individual images. The process of auto-
mating stage motion, focus and image capture is achieved by
SerialEM, developed by David Mastronarde at the University of
Colorado, Boulder (Mastronarde, 2005). A more advanced TEM
system based on custom camera arrays and modified TEM column
placement has been developed by Bock et al. (2011). This platform
may be an ideal schema for future connectomics programs but will
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need a commercialization path, as it is not currently as readily
implemented as SerialEM on existing TEM platforms.

2.4. Connectome assembly

There are two approaches for building navigable volumes. One
converts 2D data slices into a 3D projections which, while useful if
implemented at high resolution, requires high performance visual-
izationenvironmentsmanyusers lack. Others have opted for a paged
architecture, similar to Google Earth and KML (Google, 2010),
treating each slice as a single array of 2D mapped tiles in image
pyramid form, which decreases computational overhead and facili-
tates navigation, access and sharing (Anderson et al., 2011a). Algo-
rithms for automated tiling and slice-to-slice registrations (Tasdizen
et al., 2010) use image Fourier shift to rapidly compute displacement
vectors. Refined slice-to-slice alignments then automatically build

2 nm resolution volumes. Similar approaches can also be used to
align large scale optical atlases (Berlanga et al., 2011).

A physical connectome can be various sizes depending the
resolution needed, the spatial scale of the canonical region
required, and acquisition parameters. The limit on connectome size

Fig. 2. Connectome RC1 slice 001. Composed of >1000 high-resolution TEM tiles, the
slice is augmented with a transparency mapping simultaneously displaying GABA
(red), glycine (green), glutamate (blue), and the logical AND of glutamine and taurine
signals as a dark gold alpha channel. GABAþ (red) neurons are ACs, while glycineþ
(green) neurons are either ACs or an ON cone BC subset. Glutamateþ (blue) neurons
are largely BCs. Image width, 243 mm. From Anderson et al. (2011b), Molecular Vision
17:355e379 by permission of the authors.

Fig. 3. RC1 volume overview. (A) The RC1 volumewith its top section beginning inmid-
INL and ending in the GCL shown in a mirror image. RC1 is a short cylinderz 250 mm in
diameter and z30 mm high containing 341 TEM sections and 11 intercalated CMP sec-
tions. The cylinder is capped at top and bottom with 10- section CMP series allowing
molecular segmentation. TEMSection 001 is a near-horizontal plane section through the
INL visualized with GABA.glycine.glutamate / red.green.blue transparency mapping
and a dark gold alpha channel (ANDed taurine þ glutamine channels) described in
Anderson et al., (2011a). Similarly TEM section 371 is a near-horizontal plane section
through the GCL visualized with GABA.AGB.glutamate / red.green.blue transparency
mapping. (B) Representative cells contained in RC1 are rendered in 3D onto the volume.
Many complete copies of small cells exist (tens to hundreds) such as rod BCs (cells 1,2)
and AII ACs (cell 3). A few semi-complete copies (5e10) of medium-diameter cell classes
have their somas and much of their arbors within RC1, but extend outside it, such as
interstitial gACs (cell 4) and AI ACs (cell 5). Finally, RC1 contains many processes from
partial cells: large cells such as wide-field ACs or OFF a GCs (cell 6) with somas outside
the volume and often fully traversing it. FromLauritzen et al., (2012a,b), by permission of
the authors.

Fig. 1. Key aspects of high-resolution connectomes. (A) Small sets of serial TEM sec-
tions. The gold spots (arrows) are imaged connectome volume slices. (B) Parameters of
connectomes RC1 and RC2. (C) Small molecules targeted by CMP. Top to bottom: AGB,
aspartate, glutamate, glycine, glutathione, glutamine, arginine, taurine, GABA. (D) CMP
imaging of GABA (red), AMPA-activated AGB (green), and glutamate (blue) in an
oblique section of rabbit retina.
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is currently determined by the time required to image it at the
chosen resolution. Imaging time is inversely proportional to the
square of resolution. In the case of RC1, based on the rabbit inner
plexiform layer, 2 nm resolution and a canonical somatic volume
(one that contains at least one soma of every cell type) defined as a
0.243 mm cylinder spanning the inner nuclear and ganglion cell
layers, acquisition required 5 months of TEM beam time and
required 16.4 Tb of raw and z64 Tb total storage, including live
data, a mirror, and archival backup. The volume contains over 300
bipolar cells (BCs), 300 Müller cells (MCs), 39 AII ACs, over 100 ACs,
and 20 ganglion cells (GCs) and includes a full set of small molecule
markers for classification. Every cell can be reconstructed. However,
this somatic volume is much smaller than a canonical dendritic
volume in the rabbit retina (Fig. 3). The diameters of the largest GCs
and ACs exceed 1 mm and full dendritic reconstructions with cur-
rent technologies based on a single TEMwould require 4e5 years of
imaging time and a petabyte of storage, beyond any laboratory’s
current resources. A new strategy for this is a multiresolution
approach, e.g. mixed 10 nm and 2 nm TEM imaging, with 10 nm
captures being 25" faster. A new ATEM mouse retinal connectome
spanning the outer nuclear and ganglion cell layers at a diameter of
0.28 mm is now being built. A stick figure of mouse inner plexiform
layer connectome spanning about 0.08 mm " 0.1 mm has been
published by Helmstaedter et al. (2013) that defines many mouse
bipolar, amacrine and ganglion cell classes based on stratification,
patterning and presumed contacts. It employs autodetection of
synapses, but no ground truth data were published with it to
validate those synapses, and no gap junctions were reported.
Interestingly, ON and OFF bipolar cells were classified by stratifi-
cation (Helmstaedter et al., 2013) rather than direct synaptic or gap
junction contacts with AII ACs (Anderson et al., 2011b; Lauritzen
et al., 2012a, 2012b).

2.5. Navigating and mining connectomes

Conventional imaging tools are incapable of visualizing datasets
as large as a connectome,much less navigating them in a structured
way. New tools are required (Anderson et al., 2011a; Fiala, 2005;
Helmstaedter et al., 2013; Jeong et al., 2010). By using image pyr-
amid sets (Anderson et al., 2011a; Mikula et al., 2007), web-
applications can readily view, transform and annotate con-
nectomes. Anderson and colleagues have developed Viking, an
open-source web-compliant environment (Anderson et al., 2011a)
that allows visualization by converting datasets to web-optimized
tiles, delivering volume transforms to client devices, and
providing groups of users with connectome data simultaneously
via conventional internet connections. By enabling rapid disc-based
annotation, Viking converts raw ultrastructural data into rich
network graphs (Fig. 4), 3D navigational skeletons, marks up syn-
apses and other cellular identifiers, builds databases to be queried,
and 3D renderings in multiple formats all at 2 nm or resolution.
Presynaptic ribbons, patterned densities, vesicle clouds, post-
synaptic densities, gap junctions, adherens junctions are charac-
terized by their connectome physical locations, dimensions and
parent structures, allowing the assembly of formal adjacency
matrices.

Connectomics data are so difficult and expensive to acquire that,
ethically they must be shared (Amari et al., 2002; Anderson et al.,
2011a; Jeong et al., 2010; Marc et al., 2012a). Computational
frameworks based on REST (REpresentational State Transfer)-
compliant web-services (e.g. Viking) overcome the impracticality
of distributing raw datasets. The Viking approach also uses com-
mon file formats to enable use of other visualization systems, e.g.
Blender (www.blender.org) or Autodesk" Maya. Such approaches
also minimize journal overhead costs since they needn’t act as data
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Fig. 4. A Connectome Viz graph. The one-hop graph of interstitial AC 9769 (the inverted trapezoid at the center of the image) built automatically from annotations in rabbit retinal
volume RC1. Aqua ovals are ON cone BCs (CBb) presynaptic to cell 9769. The red triangle is a gAC presynaptic to 9769, the gold ovals are beaded-process gACs both pre- and
postsynaptic to 9769, while the three brown ovals are GCs postsynaptic to 9769. Gray ovals are identified but unclassified cells. Green arrows are ribbon synapses, red bars are
inhibitory synapses, gold two-headed arrows are gap junctions. Black arrows are adherens junctions.
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repositories. We have opted for full public sharing of dataset RC1
and our tools. Connectomics enables a new generation of
anatomical analyses: any cell can be traced many times, traced
concurrently, with complete tracking of metadata. At any arbitrary
origin in a data volume, a collection of synapses can be traced back
to their sources while the physical locations and links (associations)
for every cell or subcellular part are assembled into 3D renderings,
network graphs, and navigational tools such as Viking Bookmarks,
which are organized xml collections of locations, links, parent and
child structures that can be used to support or illustrate any topic,
hypothesis or analysis for a volume. Unlike classic legacy anatomy,
everything done in connectomics is open and transparent. All the
data and resources for the RC1 connectome are available through
http://prometheus.med.utah.edu/wmarclab.

3. Connectomics discovery

3.1. Introduction

The massive effort in developing connectomics technologies
would be quixotic had there not been reasonable expectation of
new and meaningful discoveries rather than just incremental
validation of previous ideas of network architecture. Our earliest
investigations have not only born out the idea that it was worth
developing more complete network models, but have also shown
that many retinal networks are more complex and diverse than
expected. Furthermore, new signal flow paths have been found. In
discussing these networks we use a set of typographic notations to
compactly represent anatomically and physiologically diverse
synaptic chains (see Section 4.6: Network Notation). These nota-
tions address the need to eventually go beyond adjacency matrices
to weighted matrices. While physiological assessments for this
parameterization do not exist for all aspects of the networks we are
mapping, it is important to specify what those parameters might be
and provide a database notation for them, even if we cannot model
them completely. A seeming esoteric but nontrivial point is that
these placeholder parameters (which now only hold simple values
such as nominal polarity, approximate gain, presynaptic vesicle
cloud size, postsynaptic density size, synapse numbers) are
extensible vectors that can accommodate further complexity such
as receptor type, voltage and time dependencies, modulation etc.,
as we learn how to acquire those features from coordinated con-
nectomics/high throughput physiology studies in the future.

There are ten major areas in which connectomics is changing
our understanding of cellular networks: Refactoring the inner
plexiform layer via ON cone BC drive in the OFF layer, refactoring
the inner plexiform layer via OFF cone BC drive in the ON layer, rod-
cone crossover suppression, generalized crossover, tiered coupling,
heterocellular coupling, sparse networks, joint distributions, nested
AC networks, novel connection architectures.While it is beyond the
scope of this paper, a broader ultrastructural analysis can be
conceived: histomics, the quantitative analysis of heterocellular
geometries in complex non-neuronal tissues.

3.2. ON cone BC drive in the OFF sublayer

The OFF sublayer of the IPL is not a pure OFF signal source;
rather it contains significant numbers of ribbon outputs directly
from the in-transit axons of ON cone BCs. In one sense this is not a
new discovery. Non-mammalian bony vertebrates such as reptiles,
avians, amphibians, teleost fishes all display multistratified bipolar
cells and in fishes, ON bipolar cells have definitive synaptic outputs
in the OFF sublayer (e.g. Sherry and Yazulla, 1993). In the past,
bistratified mammalian BCs have been noted in Golgi preparations
(e.g. Famiglietti, 1981), but the concept of dual ON/OFF signaling in

the mammalian OFF sublayer appears not to have been seriously
considered until ON BC axonal ribbons in the OFF sublayer were
independently visualized at the optical level by Dumitrescu et al.
(2009) and Hoshi et al. (2009).

Connectomics has now validated these observations (Anderson
et al., 2011b) both by showing presynaptic axonal ribbons and
characterizing postsynaptic targets (Fig. 5). After mapping hun-
dreds of BC axons, we showed that 36% of CBb cells form OFF layer
axonal ribbons (Fig. 6), that the entire OFF layer contains axonal
ribbon outputs from all CBb classes, targeting ON GCs that arborize
in the OFF sublayer, e.g. intrinsically photosensitive GCs and bis-
tratified diving GCs, as well as discrete sets of glycinergic ACs
(GACs) and GABAergic ACs (gACs) for ON / OFF crossover
(Lauritzen et al., 2012a). The diverse targets of axonal ribbons are
summarized in Fig. 7. This an important concept in the generation
of GC signal polarity, kinetics and temporal precision: multi-
stratified cone BCs can multiplex signals in the ON and OFF sub-
layers (see below). This is an alternative to the notion that AC and
GC stratification patterns alone control access to ON and OFF inputs.
We have shown that monostratified ACs or GCs can be ONeOFF,
that bistratified cells can be pure ON and that monostratified GCs in
the OFF sublayer can be pure ON, similar to tyrosine hydroxylase
(TH) immunoreactive axonal cells (AxCs). One may also ask why all
CBbs do not show axonal ribbons. This issue is addressed in Section
3.8 Sparse Networks and Joint Distribution Rules.

But why might intrinsically photosensitive GCs and bistratified
diving GCs arborize in the OFF layer to capture ON signals? Our
connectomics mapping demonstrates that these cells also acquire
direct input from OFF gACs, providing yet another ON motif initi-
ated in the ON layer: cone > CBa > gAC > i ON GC, with a gain of
n2p. Since most inhibitory gains p are fractional (Wu, 1991), the
direct ON (CBb) chain should have a higher sensitivity than the
indirect ON (CBa > gAC) chain by a factor of p#1. This suggests that
multiple ON inputs might have different dynamic ranges and either
extend response ranges or use different ON waveforms to shape
total response functions, especially during light adaption.

3.3. OFF cone BC drive in the ON sublayer

The ON sublayer of the IPL is not a pure ON signal source; rather
it contains significant numbers of ribbon outputs directly from fine

Fig. 5. Axonal ribbons in RC1. (A) Axonal ribbons (r) at mid-axon (blue) from CBb 180
(C180) to AC targets (orange) in the OFF sublayer. CBb 180 splits high in the OFF
sublayer and makes axonal ribbons immediately after the split. (B) Axonal ribbons
from CBb 166 (C166) onto two different targets (orange, yellow), one of which makes a
feedback synapse (arrow). Note the distinctive postsynaptic densities in the targets.
Scales, 500 nm. Recomposed from Anderson et al., (2011b) Molecular Vision by
permission of the authors.
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descending processes of OFF cone BCs (Lauritzen et al., 2012b). RC1
contains diffusely-stratified OFF cone BCs that synaptically target
amacrine cells in the ON sublayer via fine descending processes.
This architecture forms a large band of commingled ON and OFF BC

inputs in IPL sublayers 3-5. These processes, often <100 nm in
diameter, descend from the primary OFF sublayer into the upper
part of the cone ON sublayer, mixing OFF CBa outputs in the same
region as ON CBb cells. For example, intermixed ON CBb3 and OFF
CBab2 terminal processes allow ACs to collect from both types to
generate ONeOFF functions.

These new sets of BCs are referred to as CBab cells to indicate
their dual outputs. But, importantly, they are canonical OFF cone
BCs as they primarily arborize in the OFF sublayer, are coupled to
other OFF BCs, are both presynaptic and postsynaptic to AII AC
lobules, and are glycine-negative. All these features are diagnostic
of mammalian OFF BCs. The diversity of contacts is as complex as
for axonal ribbons. Pushing the OFF inputs far past the nominal
ONeOFF border and considering the complete mixture of CBb
axonal ribbons in the OFF layer ultimately creates a central mixed
ONeOFF band spanning about 75% of the IPL. The same ONeOFF
excitatory drive is partitioned into GAC and gAC-mediated parallel
channels that can target the same GC, which presumably shapes
the response properties of the GC targets. CBab cells provide direct
ribbon drive to at least one GC class in the ON layer. CBab cells also
synapse on ACs throughout the nominal ON layer of the IPL,
creating ONeOFF ACs that likely impact all CBb surrounds. These
inhibitory motifs are both feedback and feedforward, targeting
GACs and gACs, which in turn synapse onto CBa and CBb cells, and
at least two classes of GCs. It seems that, by breaking the classical
stratification rules of the IPL, CBab cells form specific ONeOFF
subnetworks that could not otherwise be constructed. These
unpredicted network topologies may underly widespread ONeOFF
signals. Taken together, these new findings suggest a revision of the
traditional view of IPL lamination in mammals to one more in line
with the likely structure of non-mammalian retinas (Fig. 8). First,
there is no pure OFF layer at all. Rather the OFF layer is “striped”
with radial ON CBb axons that provide a sparse grid of ON inputs for
specific neurons. Second, the great mid-zone of the IPL is populated
by a block of ON and OFF cone BCs whose surrounds are explicitly

Fig. 6. Axonal ribbons. The distribution of 160 axonal ribbons in 54 CBb cells and 63
ribbons in 63 of 104 rod BCs in RC1. Ribbon positions are measured relative to the
sublayer a/b border, defined as the proximal face of the nearest AII AC lobule. CBb
axonal ribbons are distributed throughout sublayer a. Rod BC axonal ribbons are
excluded from 80% of sublayer a. Further, all rod BC ribbons exclusively target AI or AII

ACs. From Lauritzen et al., (2012a,b) J Comp Neurology, by permission of the authors.

Fig. 7. A flow diagram for axonal ribbon motifs collapsed onto one canonical cell. Spatial distributions of axonal ribbons have been preserved to represent actual axonal ribbon
locations. The axonal branch in sublamina 2 and the bifurcated descending axon are included for completeness, though both occur only in a minority of cone BC cells. In addition to
abundant axonal ribbon output, CBb axons are frequently postsynaptic to ACs. S1-S6, IPL strata 1e6; red arrows, excitatory ribbon synapses; green flathead arrows, inhibitory GAC or
gAC synapses; From Lauritzen et al., (2012a,b), J Comp Neurol, by permission of the authors.
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ONeOFF by virtue of the dense mix of gACs and GACs that collect
inputs from both ON CBb and OFF CBab cells and providewide-field
and narrow-field feedback respectively. Finally, the nominal “pure”
ON zone is limited to a narrow band of rod BCs and mostly CBb6
and CBbwide-field cells. The critical feature of this new structure is
that multistratified ACs and GCs can no longer be assumed to be
ONeOFF, and that monostratified ACs and GCs can no longer
assumed to be pure OFF or pure ON. Every cell’s complete synaptic
flow must be mapped, not inferred.

3.4. ONeOFF crossover motifs

A major network concept in retinal signaling is known as
crossover: a net sign-conserving signal flow from ON / OFF and
OFF / ON channels, dominated by GACs (Hsueh et al., 2008;
Werblin, 2010, 2011). However, until the advent of connectomics,
actually understanding nature and scope of crossover was literally
impossible. The potential roles of crossover include compensating
for synaptic rectification (Werblin, 2010), enhancing rectification
(Liang and Freed, 2010) or improving contrast coding (Liang and
Freed, 2012). The underlying schema for crossover is that
diffusely stratified GACs transit the ONeOFF border to mediate, for
example, CBb > GAC > i OFF GC chains where the GAC input pro-
vides an appropriate OFF polarity via an anionic current to
compensate for AMPA receptor rectification. Of course, as we have
shown, there is an extensive amount of ONeOFF signaling within
the core of the IPL. We now know that CBb axonal ribbons provide
an ON/ OFF crossover topology to monostratified GACs in the OFF
layer directly. Further, there are also CBb> gAC> i OFF GC chains in
the OFF layer (Lauritzen et al., 2012a). So far, none of the CBb axonal
output crossover elements engage AII ACs in the nominal OFF layer.
AII ACs largely target CBa cells which means the net gain for the
AII > i CBa > OFF GC chain is np and likely rectifying. While there is

extensive direct AII synaptic drive to a and d OFF GCs (viewed from
the GC side), which are both strongly rectified GCs, the net gainwill
only be p, counterbalanced by evenmore extensive CBa2 input with
gain of np. So GACs other than AII ACs are likely the major source of
rectification correction for the OFF layer. Those networks remain to
be completely mapped but their presence is clear.

3.5. Rod-cone crossover suppression and winner-take-all networks

Psychophysics has long documented potent interactions be-
tween rod and cone vision, many of which are clearly winner-take-
all in outcome (Brill, 1990; Buck, 2004; Frumkes and Eysteinsson,
1988; Goldberg et al., 1983; Lange et al., 1997; Stabell and Stabell,
1998, 2002; Thomas and Buck, 2006; Trezona, 1970, 1973), but
the mechanisms have remained unknown. The idea that horizontal
cells mediate such interactions (as in non-mammalians) has proved
difficult to support and is complicated by the lack of evidence for
axonal signaling in mammalian horizontal cells. Further, rod-cone
interactions are fast, do not reflect the kinetics of horizontal cells
and involve narrow fields inconsistent with horizontal cell coupling
(Buck, 1997, 2004; Buck et al., 1984; Thomas and Buck, 2006).
Finally, rods can induce a variety of chromatic effects (Stabell and
Stabell, 1998). Connectomics provides definitive answers. At least
eight unique suppressionmotifs between rod and cone BCs cells are
mediated by several sets of ACs (Fig. 9). Cone suppression of rod
signaling engages five different AC chains. All rod BCs are inhibited
by CBb-driven ON gACs and GACs. A quarter to a third of AC syn-
apses on rod BC terminals arise via ON cone ACs with a net
cone / rod suppression of n2p. All key elements of the rod BC
pathway, including AI and AII ACs receive extensive cone-driven
suppression. Each AI AC is contacted by over 100 inhibitory syn-
apses on its proximal dendrites in the OFF layer via CBa> gAC> i AI
AC chains and AII ACs are targeted by cone BC > AC > AII AC chains
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throughout the IPL, including a highly selective inhibitory input
from CBb > ON GACs that target rod BCs, AII ACs and AI ACs.

Rod suppression of cone signaling is driven by three motifs.
Certain wide-field cone-driven ON gACs also collect sparse rod BC
inputs and are both presynaptic and postsynaptic to CBb cells. In
the scotopicemesopic transition, this represents an RB > gAC > i
CBb inhibitory chainwith a gain of n2p. However themost powerful
motif is the full rod > m RB > AII ACs:CBb > gAC > CBb chain with a
suppressive gain of n3p. Because AII cells are narrow field elements
(<100 mm) while the gACs are wide-field (>250 mm), each patch of
rods can inhibit a vast field of surrounding cones.

3.6. Tiered cone bipolar cell coupling

In addition to the long-established AII AC::AII AC and AII
AC::cone BC coupling patterns first described by Kolb and Fami-
glietti (Famiglietti and Kolb, 1975; Kolb and Famiglietti, 1974a,
1974b), connectomics reveals extensive axonal coupling among
cone BCs (Lauritzen et al., 2013). Coupling occurs within but not
between CBa (OFF) and CBb (ON) superclasses. We find at least 13
distinct classes of cone bipolar cells: OFF CBa1, CBa1w, CBa1-2i,
CBa2, CBa2w; CBab2; ON CBb3, CBb3-4i, CBb4w, CBb4-5i, CBb5w,
CBb6w, and CBb7w (equivalent to previously identified wide-field
cone BCs), where the number indicates a progressively more
proximal stratification stratum, i denotes an interlaced axonal
pattern bridging sheets of coupled bipolar cells, and w denotes
wide field axonal arbors (>60 mm). CBb7w cells co-stratify with rod
BCs. Coupling occurs within ON and OFF superclasses but not be-
tween ON and OFF. However, within each superclass, both in-class
(e.g. CBb4w::CBb4w) coupling sheets and cross-class coupling tiers
(e.g. CBb3::CBb3-4i::CBb4w) exist. Cross-class coupling occurs be-
tween neighboring CBb pairs because their stratifications overlap
vertically and laterally. As most CBb cells appear to express Cx36
(Han and Massey, 2005), this may explain in-class and cross-class
coupling.

So far, ON pathway tiered coupling bridges all sheets (z10e19
bipolar cells/sheet in RC1) but completely excludes any CBa or rod
BC. We propose that cone BCs use coupling to smooth signaling
transitions across BC classes with different dynamic ranges. But
since all CBb cells are also coupled to AII ACs, it is unclear why CBb
cells also engage in both in-class and cross-class coupling. CBa::CBa
coupling is also extensive, and suggests that coupling may play a
key role in setting up cone BC terminal tiling. Most CBb sheets
clearly tile via tip-to-tip coupling (Fig. 10). Whether CBa cells also
show cross-class tiering remains to be shown, but it is likely given
the existence of bipolar cells bridging layers 1 and 2. The abundance
of CBa::CBa gap junctions partly explains the many gap junctions in
the OFF layer visualized by freeze-fracture (Kamasawa et al., 2006).

3.7. Heterocellular gAC::GC coupling

Dye coupling (e.g. Vaney, 2004; Vaney and Weiler, 2000; Xin
and Bloomfield, 1997) and pattern recognition of small molecule
signals (Marc and Jones, 2002) has clearly established the likeli-
hood of gap junctions between ACs and GCs, but the identities of
the source ACs, distributions of coupling sites and visualization of
gap junctions has awaited connectomics. While details of the net-
works involved remain incomplete as of this writing, pieces are
coming together quickly. First, the gap junctions between gACs and
GCs are very sparse, small (often < 200 nm in extent) and are
optically invisible amongst the vast numbers of gap junctions made
by AII ACs and cone BCs. A particular class of gACs, the ON inter-
stitial AC (IAC), is exclusively a feedforward AC that collects from an
extensive pool of CBb cells and is presynaptic to other gACs and
selects GCs. Specifically it is coupled at several sites to GC 606, a
large gþ ON GC (Fig. 11). While GC 606 is alpha-like in somatic size,
it differs in selecting from different classes of CBb cells across the
proximal IPL. Given that ON alpha GCs are deemed not to be
coupled to ACs (Hu and Bloomfield, 2003; Völgyi et al., 2013; Xin
and Bloomfield, 1997), GC 606 is likely to be another class of large
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which drive OFF gACs to inhibit nearby and distant CBa cells. (H) Motif R3. Sparse rod BCs drive mixed rod-cone gACs that are presynaptic to large numbers of CBb cells. Lauritzen
et al., in review.
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soma GC, but its physiology type remains unknown. GC 606 is also
coupled to at least 5 different AC instances (separate cells) and
likely more. The coupling signal into GC 606 arises from ON gACs in
general and a cell (the IAC) which likely has a very strong ON
response in particular. This sparse coupling is a further testament to
the importance of ATEM connectomics. Such junctions are barely
detectable with 2 nm resolution and impossible to find or validate

with SEM based methods. Moreover, ATEM uniquely allows 0.3 nm
resolution re-imaging to validate gap junction identities (Fig. 11D).

3.8. Sparse networks and joint distribution rules

The sites of signal transfer in the retina range from dense clus-
ters of ribbon outputs by BCs to very sparse neurite sampling by ACs
and GCs. The signal transfer functions between source cells A and
target cells B is a joint distribution JAB: the intersection between
their individual neurite distributions: JAB ¼ AxYZ X BxYZ. These
distributions formally include all forms of contact (e.g. adherens
junctions, gap junction, presynaptic and postsynaptic junctions).
Cell classes differ in neurite density and geometry (Reese, 2008), so
the joint distributionwill vary with pairing (Lauritzen et al., 2012a).
As an example, GABAerigc gAC classes have large coverages with
extensive overlap, while glycinergic GAC classes have modest
overlaps. GCs largely tile withminimal overlap. It is mathematically
impossible for all of these cells to interact uniformly, especially if
their neurites are sparse. Different superclasses and classes have
different Hausdorff dimensions, i.e. the amount of space-filling
curvature they express in a plane. Hausdorff dimensions are very
low for wide-field ACs and alpha GCs, and higher for BCs and
directionally selective GCs. Put simply, it is impossible for every
source and target to be optimized to achieve 100% contact. Since we
don’t know the sampling distributions for various cell classes, we
must discover them by connectomics. Historically, the descriptions
outflow of signals from one kind of cell to generic superclasses of
targets (e.g. a given BC / ACs and GCs) has not been assessed in
terms of joint distributions in a Hausdorff space, but this is an
important future descriptor of networks. The important concept is
that many signaling pairs, especially if their neurites are sparse,
have a mismatch between the density profile of their output syn-
apses AxYZ and any cell’s sampling of those outputs AxYZ X BxYZ
(Fig. 12).

Fig. 11. GC::AC coupling. (A) Layer 371 of the RC1 dataset shown as a fusion of the GABA signal (red), the TEM imagery (greyscale) and the annotation overlay (blue). Scale 50 nm. (B)
Scaled inset from panel A indicating three annotated cells with ellipses: a g- GC, gþ GC 606 and a gþ starburst AC. Scale 50 nm. (C) The GABA channel from layer 371 showing the
absence of any signal in the g- GC, a moderate coupling signal in the gþ GC 606 and a strong endogenous signal in the gþ starburst AC. Scale 50 nm (D) gþ GC 606 and gþ IAC 9769
overlap and co-fasciculates at the ellipse. However coupling also occurs outside fasciculation sites. Panel width 243 mm. (E) Re-imaging of AC::GC coupling at 0.3 nm resolution. Gap
junction between AC 45406 and gþ GC 606 is slightly larger than 100 nm in extent (arrows). Scale, 100 nm. Sigulinsky et al., unpublished.

Fig. 10. Tip-to-tip BC coupling. A coupled tier of CBb5w ON BCs viewed in the XY plane
(the retinal image plane). This is a new class of CBb cells that forms a precise stratum
distal the new class of CBb6 cells and are coupled in-class via tip-to-tip junctions. Each
cell ID allows tracking of all features in Viking (Lauritzen et al., 2013).
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Concrete examples of joint distribution mismatch are (1) the
axonal ribbons of CBb cells and their targets in the OFF layer
(Lauritzen et al., 2012a), and (2) the outputs of AII ACs onto the
dendrites of GCs in the OFF layer (Anderson et al., 2011b). In both
instances, sources far outnumber targets. AII ACs have large Haus-
dorff dimensions and form far more output sites than are required
to completely target all the GC dendrites in the OFF volume.
However, OFF alpha GC dendrites traversing the OFF layer receive
input from every AII AC they encounter, with perfect efficiency. This
means that the classical practice of measuring output percentages
(e.g. percent output to ACs and GCs from a BC) and computing their
variances has little meaning for network analysis.

In addition, we suggest that, rather than simply measuring the
number of ACs targeted by a given BC, we should develop tools
address an evolutionary, developmental and topological question:
What connectivity achieves idempotent output for a specific
network? Idempotency is the level at which additional inputs are
superfluous for the function of a network selected by evolution. We
are only now developing the genetic tools to test this hypothesis by
targeting specific retinal cells and, ultimately, altering their syn-
aptic sampling. Similarly, model bipolar cells for network analysis
are only now being developed. But our mapping of cone BCs argues
that they needn’t all be proportionally contacted by wide-field ACs

to achieve idempotent networks as they are embedded in a coupled
sheet. Conversely, sampling the connectivity of a few BCs will never
give a correct population profile of synapses for a network’s motifs.
Some retinal GCs and wide-field ACs sample relatively few excit-
atory synapses over 0.25 mm: z 10 or so inputs per dendrite. This
has two consequences: (1) noise reduction may be a major role of
many feedback and coupling networks; (2) small fragments of ul-
trastructure may not capture true network design.

3.9. Nested ACs: fine-tuning the retina

It has long been known that serial AC / AC synapses are
abundant throughout the IPL (Dowling, 1968; Dowling and Boycott,
1966; Witkovsky and Dowling, 1969). Indeed, AC synapses far
outnumber ribbon synapses and the most common targets of most
ACs are other ACs, the AII AC being an exception as it predominantly,
but not exclusively, signals CBa cells with glycinergic synapses and
CBb cells with gap junctions. One hypothesis advanced by Dowling
was that ACs were a mixture of inhibitory and excitatory neurons.
On balance, all ACs appear to be primarily inhibitory (Marc et al.,
1995), even if some have secondary excitatory neurotransmitters
such as acetylcholine. So most serial synapses are likely concate-
nated inhibitions (Marc and Liu, 2000). One role of serial AC syn-
apses is nested inhibition. For example, simple feedback inhibition
can be summarized as a motif where a population of ACs is both
presynaptic and postsynaptic to a population of BCs. In nested
feedback, the ACs also inhibit each other. We previously showed
that nested feedback and feedforward were common architectures
in the fish retina and argue that they were analogous to nested

Fig. 12. How joint distributions influence sampling. A set of BC axons (white) traverses
the retina normal to the image plane. (A) A high coverage cells are displayed as
different colors for every instance. Each BC axon is contacted several times for an
average contact of 2.4. In the bottom field, a two different classes of GCs (yellow, blue)
form part of their tiling by overlapping dendrites and sampling from the BC grid. Most
BCs are missed, for an average outflow contact of 0.375, which is meaningless. Six
circled BCs are contacted by the GCs (none twice), and the GCs are errorless in con-
tacting a BC that is encountered. The point is that GCs have low Hausdorff dimensions
(they are not space filling) and their sampling is idempotent, i.e. further inputs would
be superfluous. Modified from Marc et al. (2013), The New Visual Neurosciences, in
press, by permission of the authors.

Fig. 13. Cross-channel synaptic nesting. (A) Viking annotation overlay in section 221
showing three cells, C20728 is a wide-field beaded ON gAC that receives input from
CBb cells and is presynaptic to CBb cells, rod BCs (C 11401), other ON gACs (in class)
and C1620, an ONeOFF gAC that receives input from both CBa and CBb cells. It is also
presynaptic gAC 20728. (B) Annotations removed and an inset from section 224.
Lauritzen et al., unpublished.
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transconductance amplifiers (Xie et al., 1999) for tuning the tem-
poral features of retinal networks and perhaps even configuring
trigger features (Marc and Liu, 2000). Connectomics strongly sup-
ports this hypothesis by revealing the abundance of nested motifs.

Over 300 instances of cone pathway gACs have been traced in
the rabbit connectome volume RC1 and they are all nested (Fig. 13),
suggesting that simple feedback without nesting does not occur in
any cone-driven network. Nested inhibition is likely a basic control
motif for controlling the signaling dynamics of every photopic
pathway. There are at least two modes of nesting (as with BC
coupling): in-class and cross-class (Fig.14). In-class nested gACs use
feedback on the same class of gACs and a common class of BCs.
Cross-class nested feedback gACs targets different cone BCs and or
different gAC classes. A powerful example of cross-class nested
feedback is rod-cone crossover, where different CBb classes drive
wide-field gACs that target both rod BCs and other rod-cone
crossover gACs. We don’t yet have complete enough data to
differentiate individual in-class and cross-class instances, but cases
of both are abundant and some cells clearly dominate cross-class
nested feedback (Marc et al., 2013).

The functions of nested feedback in general are not established,
but three likely roles have emerged (Marc et al., 2012b; Marc and
Liu, 2000). In the first, derived directly from control theory, nes-
ted feedback can be shown to suppress ringing in simple first-order
feedback, thus increasing network bandwidth and fidelity. Second,
depending on the strength of inhibitory signals, nested feedback
may be critical timing elements of winner-take-all networks.
Finally, crossover networks, largely but not exclusively driven by
GACs, mediate signaling between all elements of ON and OFF
channels. If we posit that ON / OFF crossover mediates rectifica-
tion attenuation by delivering an anionic image of the ON signal
(nominally an OFF signal), then both GCs and ACs in the recipient
network should receive that signal to maintain network symmetry.
Connectomics shows that to be likely based on network topology.
Of course timing parameters will definitely have to be assessed by
physiological profiling.

3.10. Towards a complete AII AC profile

Profiling AII ACs was an initial proof of principle for our con-
nectomics initiative. If we could not rapidly replicate and extend
the basic findings of the founders of retinal TEM imaging
(Famiglietti and Kolb, 1975; Kolb and Famiglietti, 1974a; Strettoi
et al., 1992), connectomics would need a critical reevaluation. As
there are 39 AII ACs in the retinal connectome RC1 (Anderson et al.,
2011b), we have been able to data-mine the major attributes of AII

ACs, replicating all previous findings and significantly extending
them (Fig. 15).

The rod signaling pathway via rod BCs require AII ACs as a critical
low-gain fanout device to drive both CBa and CBb channels, but its
direct engagement with photopic networks is also considerable.
The precision of synaptic sampling (i.e. capturing a set of synapses
within its arbor) by AII ACs is much higher than the precision of cell
sampling (i.e. capturing sets of cells within its arbor). AII ACs in RC1
collect signals from z11 % 4 BCs, the variability being determined
by the intersection of the AII AC and rod BC tileset. However, the
coefficient of variation rod BC input is rather high (CV ¼ 0.3). In
contrast, each AII AC captures z 74 % 5 ribbon synapses with a
CV ¼ 0.1. This is important from a developmental perspective, as
variations in cell number across strains or individuals would appear
to be readily normalized by the joint actions of coupling and syn-
aptic sampling. In addition, AII AC are 8-connected (7.6 % 1) with
neighboring AII ACs via large gap junctions on their arboreal den-
drites, further damping any variations in cell density on the local
scale. AII ACs drive all classes of cone BCs by either coupling to CBb
cells or making glycinergic synapses on CBa cells. AII AC lobules also
drive OFF gACs that feedforward to AI ACs in the OFF layer, and
drive OFF a and d GCs. Unlike cat retina, we have not yet found any
evidence of output of OFF b-like cells. AII ACs also receive a spec-
trum of inhibitory synapses, from both wide-field gAC and narrow
field GACs, with at least six different class providing the drive.

in-class
nested feedback

cross-class
nested feedback

CBb3 CBb3 CBb4 CBb4

AC b3 AC b3 AC b4

Fig. 14. In-class and cross-class nested feedback. Using CBb3 and CBb4 cells as examples, gACs selective for each class gAC b3 and gAC b4 can either target other ACs of the same (in-
class) or different classes (cross-class). The feedback is nested because two AC engaged in BC feedback also inhibit each other.

Fig. 15. The connectome for AII ACs. There are four excitation paths (solid arrows),
three coupling paths (lines), five modes of GABA inhibitory input (open arrows), and
four inhibitory glycine outputs (double arrows). WF, wide field ON cone BCs; RB, rod
BCs; TH1, class 1 dopaminergic axonal cells; a, alpha GCs; d, delta GCs; pAC, peptidergic
GABAergic AC; OFF AC1, dominant monostratified OFF cone AC population; OFF AC2,
minor monostratified OFF cone AC population; ON AC, dominant monostratified ON
cone AC population; ON SAC, ON starburst amacrine cell; AI-S2 subclass S2 class AI
rod-dominated GABAergic AC. From Marc et al., (2012a,b) Current Opinion in Neuro-
biology, by permission of the authors.
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The photopic excitatory drive of AII ACs comes from four sources.
Three arewell known: (1) direct ribbon synapses from CBb cells, (2)
direct ribbon synapses from CBa cells; and (3) extensive coupling to
all classes of CBb cells (Famiglietti and Kolb, 1975; Strettoi et al.,
1992). The fourth is new and somewhat controversial: somatic
conventional synapses from glutamatergic TH1 axonal cells. The
somatic synapses were first documented by Voigt and Wassle
(1987). We demonstrated that rabbit TH1 cells distinctively
display glutamatergic signatures (Fig.16) in Anderson et al. (2011b).
The ON responses of TH1 cells arise from CBb axonal ribbons
(Dumitrescu et al., 2009; Hoshi et al., 2009) and likely drive AII ACs
by AMPA receptors. AII ACs clearly have a complex set of drivers at
every point in their scotopic and photopic ranges. Referring to the
AII AC as a “rod” AC makes little sense as over 90% of the connec-
tivity of AII ACs is cone-related, and it may be an archetypal cone
pathway crossover cell.

3.11. New cell architectures

The characteristic ultrastructures of ribbon synapses, conven-
tional synapses, gap junctions and adherens junctions have been
known since the 1960s. Remarkably we have found several new
contact architectures between neurons (Figs. 17 and 18). One of
concepts emergent from modern proteomics is that every

interactomehas an architecture and specialized cell trafficking. Thus
new contact features must reflect molecular relationships we have
yet to associate with cytologic features in neurons. Traditional TEM
photomicrography is a poormethod for screening cell relationships.
This is where connectomics is transformative, by automating im-
aging and data display and making connectomes open-access.

3.11.1. Cistern contacts
Cistern contacts (Figs. 17A and 18A) are typically (but not

exclusively) made between ON cone BCs and their AC targets
(Anderson et al., 2011b; Lauritzen et al., 2012a), often near
axonal ribbons. They have a post-cisternal density that closely
resembles a conventional postsynaptic density (PSD). The pre-
cistern architecture is a single cistern of smooth endoplasmic
reticulum (SER). We have no way to determine the polarity of
the contact, but the similarity of the post-cistern to a classical
PSD suggests the pre-cistern is a signal source. The SER-like
cistern suggests further that lipid-based signaling may be
involved and we propose that endocannabinoids could be pro-
duced or released there. Cannabinoid receptors are abundant in
the inner plexiform layer (Yazulla, 2008) and appear to modu-
late the strength of inhibition (Middleton and Protti, 2011) but
no architecture has been associated with endocannabinoid
signaling.

Fig. 16. Rabbit TH þ cells have glutamatergic, not GABAergic signatures. Nine panels each showing one TH þ cell from a single rabbit retina (AeI), probed for TH, glutamate and
GABA in serial 200 nm sections. Each panel shows four mappings: upper left TH (yellow) þ glutamate (blue), upper right TH (yellow) þ GABA (red), lower left glutamate alone
(cyan), lower right GABA alone (yellow). The location of each TH þ cell is circled. Each TH þ cell has a glutamate signal higher than the surrounding amacrine cell somas and
equivalent to that of a ganglion cell. TH þ cells have no measurable GABA signal. Scale, 10 mm. From Anderson et al. 2011b Molecular Vision, by permission of the authors.
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3.11.2. Rough endoplasmic reticulum (RER) contacts
RER contacts (Figs. 17B and 18B) form architectures very like

cistern contacts. Though not as prevalent as cistern contacts, they
are regularly found and are distinctive in possessing 2e3 flattened
SER cisterns on the pre-RER side capped by a loop of RER, and a
PSD similar to classical excitatory synapses. RER contacts can

originate both in somas and processes, and we propose that they
synthesize a signaling peptide whose nature prevents it from
being trafficked rapidly, demanding local synthesis. There are
many peptides whose distribution and modes of action remain
unknown.

3.11.3. Bipolar cell conventional (BCC) synapses
BCC synapses (Figs. 17C and 18C) are large synapses that lack

bipolar cell ribbons and are apposed to extremely large PSDs. Only
cone BCs make these contacts and wide-field cone BCs make them
with higher frequency than narrow field BCs. Additionally, nearby
ribbon synapses form contacts with cells whose PSDs are typically
less than 200 nm in extent while BCCs contact cells that make
extremely large PSDs over 300 nm in diameter. It appears that
CBa1w wide-field OFF BCs make few or no ribbons at all and
exclusively use BCC contacts. While one might raise the question of
whether this is really a BC, CBa1w has a bipolar form, a glutamate
signal, AC targets and is postsynaptic to AII ACs. Finally, BCC syn-
apses target a subset of ACs and GCs and never appear to engage
wide-field gACs. We propose that BCC synapses provide moderate
gain transient outputs while ribbon synapses support sustained,
high gain signaling.

3.11.4. Keyholes
Keyholes (Figs. 17D and 18D) are unique topological closures

formed by certain cone BCs when a small axon terminal tendrils
curl back and form a gap junctionwith the parent terminal in such a
way that fine AC processes, as small as 30 nm, are captured in a
tunnel of BC membrane. Whether this is epiphenomenal or a true
attribute of cone BCs is not clear. The former is definitely possible as
cone BCs are extensively coupled, probably through homotypic
connexins, and there would appear to be no molecular mechanism
to prevent self-linking. Alternatively these keyholes appear to
repeat in neighboring BCs, are biased for cone BCs and selectively
capture AC processes. We have not found any empty keyholes.
Further, other cells that make homotypic gap junctions such as AII
ACs never form keyholes. If keyholes are functional, theymay act as
low-gain ephaptic signaling sites.

3.11.5. Microglia
Microglia (Fig. 19A,B) figure prominently retinal degenerations,

but their fundamental roles in normal retina are uncertain. Sur-
prisingly, microglia in normal retina showed large AGB signals
suggesting responses to synaptic glutamate release. This could
happen through at least three mechanisms: in vivo glutamate
sensing by ionotropic glutamate receptors (e.g. AMPA receptors),
purinergic channels, or stretch-sensitive channels in response to
changes in intraocular pressure by injection. Microglia have been
reported to express AMPA and NMDA receptors, metabotropic
glutamate receptors, glutamate transporters, and display glutamate
mediated chemotaxis (Guo et al., 2009; Liang et al., 2010; Pocock
and Kettenmann, 2007). Our reconstructions of microglia show
that they place small processes very close to bipolar cell synaptic
ribbons without interposed Müller cells, suggesting they can
directly sample glutamate release. While much research has
focused on the tissue damage associated with microglial activation,
their normal roles in retina are less clear. In CNS, microglia have
been associated with regulation of synaptic plasticity (Wake et al.,
2009, 2013), and some data suggest that normal glutamate acti-
vation of microglia leads to neuroprotective neurotrophin secretion
(Liang et al., 2010).

3.11.6. Organized smooth endoplasmic reticulum (OSER)
Large-scale OSER architectures are uncommon but have been

described in plants, fungi, and mammalian adrenocortical cells as a
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Fig. 17. New connection architectures. (A) Cistern contacts possess a single loop of SER
in the pre-cistern element, a typical synaptic cleft ofz20 nmwith periodic densities in
the cleft, and a post-cistern density (PCD) similar to classical PSDs. Typically, Müller
cell processes (gray profiles) sheath BC axons and de-sheath to permit cistern contacts.
(B) RER contacts possess 1-2 loops of SER capped by a ribosome studded loop of RER.
The post-RER density (PRD) is similar to classical PSDs. (C) Conventional BC contacts
are made exclusively by cone BCs onto processes with very large PSDs (black) usually
adjacent to contacts involving synaptic ribbons and smaller PSDs (gold). (D) Keyholes
are arrangements where a cone BC will form a self-gap junction at the edge of a ter-
minal lobule around the connecting neurite of a beaded AC process. These neurites are
typically 30e60 nm in diameter.
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possible specialization for lipid metabolism, and in other
mammalian cell types (Korkhov and Zuber, 2009; Snapp et al.,
2003). The retinal connectome reveals that rabbit retinal Müller
cells form OSER-like aggregates: triangular SER meshes aggregate
into large 5e9 mm diameter organelles located in their end feet
(Fig. 19C,D). If these glial OSER aggregates function like smooth
muscle SER in calcium transport, they may represent a massive
calcium buffer for retinal signaling.

3.12. Summary of new connectomics discoveries

In summary, connectomics demonstrates that mining the full
connectivity of any cell is not just a simple validation of older
network concepts. All networks are proving to be far more complex
than anticipated. There are at least nine major areas in which new
motifs or functions have been disclosed.

& Connectomics refactoring of the IPL reveals that photopic CBb
drive spans the entire IPL (not just the distal half) and photopic
CBa drive penetrates deeply into the ON layer. The central core
of the IPL is composed of an extensive ONeOFF subnetwork and
ONeOFF signals likely pervade most GC outputs. This

refactoring also demonstrates that bistratified cells can be ON
and thatmonostratified cells can be ONeOFF. Thus, stratification
does not predict response pattern: connectivity does.

& Rod-cone crossover suppression is deeply embedded in all IPL
networks. Every CBb and CBa can drive rod BC inhibition and
every rod BC can drive CBa and CBb inhibition via a vast web of
ACs. The eight distinct pathways for rod-cone suppression are
likely the complete rod-cone interaction architecture.

& ONeOFF crossover inhibition driven strongly but not exclusively
by GACs is realized in multiple ways. Narrow-field multi-
stratified GACs clear mediate some crossover, but much of it is
also delivered via CBb axonal ribbons and CBab descending
processes.

& Tiered cone BC coupling was completely unexpected but is
pervasive. As most CBb::CBb and CBa::CBa coupling instances
involve gap junctions smaller than 200 nm, they will be unde-
tectable by optical microscopy. All CBb and CBa cells are coupled
within their respective superclasses (e.g. CBb::CBb). However
in-superclass coupling is tiered as it includes dense in-class (e.g.
CBb3::CBb3) and cross-class coupling (CBb3::CBb4::
CBb5::CBb5w). This means that there are several signaling paths
through the cone BC network to GCs. Understanding the scope

Fig. 18. ATEM imaging of new connection architectures. (A) Cistern contact between a CBb3 cone BC (blue, pre-cis) expressing a single loop of SER (arrow) and an AC (violet, post-
cis) with a classic postsynaptic density (pointer). (B) RER contact between a CBb5 cone BC (blue, pre-RER) expressing a paired SER-RER apposition (arrow) apposed to a GC (violet,
post-RER) with a classic postsynaptic density (pointer). (C) Conventional contacts between a CBb5w cone BC (blue, pre-BCC) with vesicles directly attached to the presynaptic
membrane (white arrows) and a coated endocytotic omega figure (yellow arrow) apposed to a GC with a classic postsynaptic density and cleft (pointer). (D) A keyholes formed by a
CBb4w cone BC (blue) via self-gap junctions (paired white arrows), trapping a linking process of 30 nm diameter from a beaded AC. All scale bars are 500 nm. Fig. 19A is from
Anderson et al. (2011a,b), by permission of the authors.

Fig. 19. Novel roles for non-neuronal cells. (A) A binucleate microglial cell C5016)with lateral processes contacting rod bipolar cells B519 and B5017. (B) The inset from panel D
showing Insertion of a microglial process (oval) close to the synaptic ribbon (r) of rod bipolar cell B5017. (C) A section through the endfeet of two Müller cells (outlined) at the retina-
vitreous border. The endfeet contain a filament-rich matrix and a large organelle of OSER. Arrow, 9 mm. (D) The inset from panel C showing the transition between the core matrix
and the OSER organelle, bounded by SER stacks. D-G Scales, 1000 nm. Marc et al., unpublished.
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of signal sharing across GCs via tiered cone BCs coupling will
require new physiological and modeling endeavors.

& Sparse heterocellular coupling is yet another mechanism for
signal propagation across retinal subnetworks. Specific gACs
engage in coupling with GCs. Taken together with tiered BC
coupling and extensive drive of all classes of cone BCs by AII ACs,
there are multiple non-synaptic paths between BCs and GCs.
While the purposes of these coupling networks are not clear,
combined with refactoring of the IPL, they could definitely
participate in image coding by setting first-spike latency signals
as proposed by Gollisch and Meister (2008), or the global pro-
jective fields of certain ACs described by DeVries et al. (2011).
Recent findings in rabbit and mouse suggest that GC coupling
mediates spike correlation (Hu and Bloomfield, 2003; Völgyi
et al., 2013).

& AII ACs are clearly deeply embedded in photopic networks.While
previous models presented them as very simple rod pathway
cells, they make at least sixteen different kinds of contacts
making them by far the most complex neuron known. Further,
they have five distinct sign conserving inputs spanning the
entire visual dynamic range. How the diverse inhibitory inputs
shape their response properties remains to be resolved.

& Sparse networks where a given cell makes only one or two
connections with a given target are likely the norm in retina.
Most of the AC inputs to BCs arise from single instances of a cell,
and similarly BC outputs onto most cells involve one or two
ribbons in transit. For example, a wide field AC that targets a few
BCs in a 250 mm span may receive only a single BC ribbon input,
suggesting that single or a few excitatory conductance events
may control entire dendrites in some cells.

& Joint distribution rules accommodate the simple fact that
different Hausdorff dimensions for cells at both the neurite and
connection level make it impossible for all cell types to uni-
formly provision all targets or sample all sources. Thus it is
critical to attend to the statistics of target rather than just source
architectures.

& Nested AC networks are the most common synaptic architecture
in the retina but no definitive role has been proven for them by
physiological methods, in part because it has not been possible
to target known nested partners. However, it is clear that most
mammalian cone gACs engage in both in-class and cross-class
nesting (e.g. motif C1 rod-cone crossover ACs), so modeling
similar to that in goldfish (Marc and Liu, 2000) is likely to be
appropriate for mammals.

& Novel connection architectures suggest that a significant amount
of neuronal cell biology has been heretofore invisible. What the
different appositions mean will clearly require molecular
exploration in combination with connectomics. Nevertheless,
there are many signaling processes such as cannabinoid
signaling whose sources and targets have not been character-
ized. Our new contact morphologies could clearly be involved. In
addition, it is likely that cone BCs can signal from conventional
ribbon-free sites and we proposed this enables them to function
simultaneously as sustained and transient cells.

3.13. Future directions for connectomics

Completeness is a new goal in neuroanatomy. Graph enumera-
tion formally proves that the structural complexity of any large
scale network transcends every inverse analysis every devised.
Deciphering the correct topologies of retinal and brain network are
NP-complete problems which no modeling or physiological
approach can ever untangle. Deciphering the individual motifs of
retinal networks requires the discovery all cell classes andmapping
all their contacts and contact patterns across multiple instances of

each class. The very fact that every network we have explored has
exposed new, previously unknown connection motifs (Anderson
et al., 2011b; Lauritzen et al., 2012a; Marc et al., 2012a) validates
this view.

Measures of completeness in any analysis depends on the ma-
trix we choose to fill for a topology mapping. Adjacency matrices
require discovery of all partners in networks. Weight matrices
require quantification of the numbers, locations and sizes of all
contacts. Even within a connectome, defining completeness can be
a challenge. Arguably, the variance of some measure should be
asymptotically minimized when sampling approaches complete-
ness. However we are still discovering those what those metrics
should be. Classical measures may turn out to be useless or even
misleading in defining completeness. Viking annotation allow
automated tracking of variances on every synaptic feature (neurite
diameters, intervaricosity distances, presynaptic vesicle cloud size,
ribbon size, postsynaptic density size) within classes, superclasses
and any other grouping. A major finding, in our view, is the
demonstration that synapse number collected by a given cell type
has an extremely small CV compared to other measures, implying
that neurons can regulate synapse number even though cells may
have quite variable dendritic or axonal overlap geometries. Further,
there are spatial variances that have no meaning for characterizing
network topologies, such as the percent of output from a given cell:
partitioning of output is not a functional metric since there is no
topologic or physiologic basis for presynaptic loading patterns
influencing any single individual output. In contrast, how any
spatially complex or sparse postsynaptic cell class samples the grid
of an output class as the input to a spatially complex cell is abso-
lutely central to understanding the development and function of
networks. Completeness can also be assessed by edge density in
network graphs where submotifs can be extracted and quantita-
tively compared.

There are several basic issues that must be addressed in
assessing whether an approach or technology is capable of
achieving complete network specifications. First and most impor-
tantly, spatial resolution limits the size of practical volumes. We
know that a resolution of at least 2.2 nm is necessary to achieve
errorless and complete annotation of all synapses and gap junc-
tions. Further, that resolution has also allowed discovery of new cell
relations (e.g.Lauritzen et al., 2012a). A recent review of con-
nectomics inexplicably touted a resolution of 10 nm as adequate,
which is clearly incorrect (Kleinfeld et al., 2011). If we accept the
idea that mapping spine architectures, SER disposition, synapse
sizes, and gap junction distributions are important (Bourne and
Harris, 2011; Kamasawa et al., 2006; Massey, 2008), TEM remains
the gold-standard. And TEM resolution also sets the standard for
quality and completeness of synaptic identification, measured
against a real ground truth. Our data suggest that statistically based
autodetection schemes are not yet functional, and the parameters
on which such a scheme might be based are still debatable. Our
data on synapse versus incidental contact identification are exactly
opposite those published by Helmstaedter et al. (2013). While ours
are validated by high resolution reimaging ground truth, those of
SBFSEM cannot be.

Second, it is not practical to rely on connectomics alone to
segment cells. The same complexity that challenges inverse solu-
tions also requires nearly complete mapping before classification
can be attempted based solely on network features. Molecular tools
are far superior for classification, as described below, and TEM is a
superior platform for embedding molecular tags. Independent de-
terminants of identity such as molecular (Shu et al., 2011) or optical
(Bock et al. 2011; Briggman et al., 2011) tagging to segment pop-
ulations can pre-validate classes and pre-select specific network
elements for annotations. This is especially useful for developing
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statistical profiles of cell classes and readily steers hypothesis-
guided analyses in connectomics.

Third, we propose that shared networks of ATEM platforms are
essential for synaptic connectomics (Anderson et al., 2009). While
it is also possible to build specialized tools for connectomics, the
scientific community needs general-purpose high resolution com-
mercial systems far more than limited resolution platforms. ATEM
systems also have a significant future role to play in the evolution of
a histomics, the analysis of cellular arrays in all tissues. Our next
objective is to develop statistically robust mini-connectome ap-
proaches, largely steered by CMP, to study the evolution and
development of retinal networks, and pathoconnectomics tech-
nologies to explore neurodegenerations (Jones et al., 2011, 2003).

4. Definitions and advanced topics

4.1. Connectomics definitions

Connectome: The complete set of cellular partners and con-
nections for a neural region. Connectomics can be executed on the
mesoscale (spatial resolution of magnetic resonance imaging or
even conventional optical imaging) to map fiber networks, or on
the nanoscale (spatial resolution of electron imaging) to map syn-
aptic networks.

Canonical Field: In a large scale network of repeating motifs, a
canonical field (area or volume) contains a selected number of re-
peats, e.g. one copy of the rarest cell or n copies of central cell in a
dominant pathway. Defining a canonical field requires domain
knowledge.

Coverage: The amount of a given plane or volume that an ob-
ject’s tile or convex hull covers in 2D or 3D space. There are three
kinds of coverages in tiling geometry: packings, tilings and cover-
ings. A set of non-overlapping cells spread over a plane, e.g. blue
cones, is a packing andwith a coverage of<1. An exact coverage of 1
is a tiling. An overlapping coverage >1 is a covering. Cells such as
ganglion cells approximate tilings, while most amacrine cells
represent coverings. These assessments are based on modeling of a
cell’s possible field of interactions as a topological disk, specifically
a convex hull of its dendrites or a parametric ellipsoidal disk
superimposed on this field. The nominal coverage C for a cell with a
planar density of D cells/unit area and a convex hull area of A units/
cell is D*A.

Hausdorff dimension: A measure of the space-filling capacity of
a structure, e.g. a collection of neuronal dendrites. The Hausdorff
dimension is a general descriptor of non-integer dimensions,
related to fractal or box-counting Minkowski dimensions. The
notion is that a dendritic field can be viewed as a collection of 1-
dimensional lines traversing a 2-dimensional area. Thus the
Hausdorff dimension is a non-integer value that specifies how
closely the dendritic field approaches a higher dimension, i.e. how
much area is traversed.

Interactome: The complete set of molecular partners and
pathways for a defined cell class. It usually refers to an interacting
sets of proteins, small molecules and ions, and is often expressed as
an undirected graph for simplicity. A key to network theory is that
graphs of different biological domains (cell topology, electrical
signals, molecular signals) can be nested in matrices to create rich
mathematical models.

Joint distribution: Formally, the intersection of one or more n-
variate distributions. For connectomics, we consider a joint distri-
bution as the physical intersection probability of neurites from
different cells. This is the outcome of both coverage and Hausdorff
dimension: howmany contacts are possible between a given pair of
cells. As an example, consider signaling from sets of source cells A
and target cells B, where their neurite patterns in the IPL are

described by volume distributions AxYZ and BxYZ. Their interaction
space is a joint distribution JAB, the intersection between source and
target neurite distributions: JAB ¼ AxYZ X BxYZ.

Nested networks: In any network architecture, there are two
kinds of nesting: hierarchical and simple. Hierarchical nesting
means containing another entire network within a node or vertex.
Simple nesting involves reentrant signal loops in a network. Marc
and Liu (2002) introduced the term to refer to different kinds of
feedback and feedforward loops in retina with reentrant features.
The concept was originally introduced as nested transconductance
in the design of high-fidelity, low-power solid state audio ampli-
fiers (e.g. Xie et al., 1999).

4.2. Graph theory definitions

Graph Theory: The study of networks and, ultimately, the
analysis of connection patterns and how signals travel through
networks. Importantly, many formal theorems about networks and
their underlying motifs (stereotyped components) scale to massive
levels. Graph theory thus lends itself to the analysis of large bio-
logical networks. There are several excellent textbooks on graph
theory and we highly recommend Bollobás (1998) and Diestel
(2010). The latter, in particular, has a rapid electronic updating
schema keeping the interested reader abreast of new findings.

Network Graph: A graph G(V,E) is a set of connections or edges
(E) among discrete elements called vertices (V). Distinct edges
between vertices can be undirected (bidirectional) or directed and
the constructed networks can be thus undirected, directed or
mixed. Biological neural networks are generally mixed due to the
inclusion of both directed (chemical synapses) and undirected
connections (gap junctions). Moreover, more sophisticated graphs
can include asymmetrically bidirectional connections. For those
familiar with electrical circuits, many critical aspects of network
graph theory were developed by Kirchoff. Unlike classical lumped-
parameter representations of current flow, network graphs are
general descriptors of processing that can include complex topol-
ogies, biological specificity, distributed and compartmental fea-
tures, and even non-stationary features in matrix representations
(see below). A simple graph allows only a single edge between
vertices and no loops. Graphs that represent real biological net-
works permit multiple edges and loops. Visualizing networks with
multiple edges requires weighting rules to aggregate or combine
multiple edges.

Adjacency Matrix: A connectivity matrix of the number of edges
Eij between every vertex pair i and j in a network of n vertices. All
connections have Eij s 0. All non-connections have Eij ¼ 0.

Weight Matrix: A connectivity matrix representing the edge
weight or strength (in defined units) between every vertex pair in a
network.

Connections and Non-connections: See Adjacency Matrix above.
The occurrence of an edge or connection between a pair of vertices or
cells is anominalproof of its existence, and its expecteddensitycanbe
computed from spatial dimensions of the chosen canonical field.
Evidence of a non-connection, however, is statistical, as one can only
assert the absence of a connection over a sampled field, compared to
realized connections. There are two types of non-connections: those
arising from lack of opportunity (spatial separationwere two kinds of
cells never touch) and those arising fromrejected connections despite
opportunity (e.g. cells touch but never synapse). The latter implies
deterministic processes in network assembly.

4.3. Classification theory definitions

Classification: Assigning an observation (a data vector of
dimension N) to a class (category) based on partitioning of the
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entire N-space. Conceptually, classes are hypervolumes defined by
N-space centroids and their statistical moments. Analysis of a large
collection if data vectors by clustering algorithms partitions the N-
space and defines the class centroids. (Marc et al., 1995) provide a
description of typical clustering for unsupervised classification (see
below). An excellent text on classification is Duda et al. (2001).

Supervised and Unsupervised Classification: There are two
types of classification. Supervised classification employs user-
selected signatures (N-space centroids) derived from previously
acquired ground-truth data to determine the classes into which
new observations will be placed. Predetermined signatures are
“supervisory.” Unsupervised classification computes class
numbers, centroid and decision boundaries from a collection of
data vectors. Signatures are computed from derived classes in an
unsupervised mode.

Computational molecular phenotyping: A method of pheno-
typing cells using quantitative multichannel molecular imaging,
measured molecule concentrations as data vectors, and unsuper-
vised classification of the molecular N-space. The expression was
introduced by Marc and Jones, in 2002.

4.4. Graph theory and connectomics

Graph theory (Bollobás, 1998; Diestel, 2010) is the formalization
of how we discover, describe, and analyze networks of all types,
including retina. The idea that the retina is a simplified part of the
brain is supported by neither molecular biology, connectomics nor
graph theory. Indeed, the vertebrate retina may represent the most
complex packing of functional networks that has ever evolved: no
brain region has as many identified different kinds of neurons or
synaptic networks per unit volume. In graph theory, cells that
integrate signals from other cells are termed vertices (V) and the
connections they form via synapses, gap junction or other spatially
discrete signaling modalities are nominally termed edges (E). Any
set of connected vertices (a,b,c) can be described as a collection of
edges (e.g. ab, bc), a path (abc) or a circuit (abca).

Any graph G can be defined by a matrix of vertices and associ-
ated edges (V, E). Vertices are connected by undirected edges or
directed edges (arcs) and we assume that gap junctions and
chemical synapses are their underlying biological forms. Graphs
may be undirected (all bidirectional edges), directed (all unidirec-
tional edges), or mixed; the latter is the norm for biological neural
networks. For simplicity we will consider all connections as edges
and track their directionalities parametrically (Fig. 20). In a simple
graph a single vertex may contact another vertex by a single edge,
but in biological systems our graphs must permit multi-edge con-
nections. After rules are established for aggregating multiple edges,
we may be permitted to collapse multiple edges to single weighted
edges.

There are degrees of completeness in describing networks.
Formally, a connectome is the adjacency matrix for a collection of
neurons in a canonical region that includes all partners and
definitive non-partners. A subtle point is that the tabulation of all
non-connections is as important as the tabulation of connections
and demands the same robustness of analysis. Defining non-
connections can be achieved by connectomics but not by routine
anatomy. A functionally complete network graph is a weight ma-
trix tabulating individual transfer functions (e.g. synaptic gains,
polarities, kinetics, etc., perhaps aggregated as a global transfer
function) for all vertices. We ultimately seek the latter, as well as
the rules for combining edges at a vertex. Connectomics can ul-
timately provide critical information for discovering the true
network topology of a system and the framework for estimating
its weights.

How might this be done with connectomics? For example,
weighting connections partly includes knowing the numbers,
spatial locations, sizes and molecular classes of synapses and gap
junctions, which connectomics can provide. While present tech-
niques are not fully compatible with antibodies for marking known
molecular classes of synaptic receptors and connexins, that is under
aggressive development (Micheva and Bruchez, 2011; Micheva
et al., 2010; Micheva and Smith, 2007). And while physiology is
essential for determining the polarities and kinetics of identified
synapses under various states, those data can only be used in a
network model when we know how many such synapses are
distributed over a target cell. Locations of synapses are unimpor-
tant if a cell is provably electrotonically compact, but compactness
cannot be assumed. Thus the locations of synapses are a rich new
source of data for modeling. Finally, physiology can estimate total
currents driven by some synapses but there are no instances where
physiology has been able to achieve this for every synapse on a cell.
Mammalian cone bipolar cells receive up to 100 individual synap-
ses from nearly as many individual amacrine cells drawn from at
least five different classes. Some ganglion cells receive over 1000
synapses of different postsynaptic morphologies and sizes, each of
which can be specified by connectomics, but not by physiology.
Every type of synapse has a distinct average postsynaptic density
size and vesicle cloud of a discrete number of vesicles. Knowing the
likely unitary conductances and sizes of distinct receptor and
connexon subunits and the size of the assembly should permit very
robust weighting. Physiology is essential for broad characterization
of function, but lacks the granularity of connectomics.

The first major contribution made by graph theory is a concrete
definition of network diversity. Graph enumeration theory de-
scribes the possible network architectures of a given system
(Harary and Palmer, 1973). Some important relations expose how
quickly network diversity can overwhelm inference. The number of
undirected (U) networks possible with n vertices is:

UðnÞ ¼ 2nðn#1Þ=2 (1)

Adding directed (D) connections admits increased network
numbers:

DðnÞ ¼ 2nðn#1Þ (2)

Even a simple undirected graph made from three vertices (e.g.
P,Q,R) can be connected 8 unique ways via the edges p,q and r:

P Q

R

ipq

j rqkrp

p q

r

Fig. 20. Simple network graphs. (A) An undirected graph with vertices PQR and
bidirectional edges pq, qr, rp. (B) A complex direct graph with vertices PQR, directed
edges i (p / q), j (r / q), k (r / p), and re-entrant edges pqr.
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none, p, q, r, pq, qr, rp, pqr (Fig. 1A). A mixed directed and undi-
rected graph of the same 3 vertices admits 64 unique versions. In
the vertebrate retina, with z70 cell classes (Marc, 2010),
D(n) ¼ 9 " 101473. For brain, where we estimate that over 1000
classes of neurons exist, based on known neuronal diversity and the
over 250 brain regions estimated from cortical parcellations (Van
Essen et al., 2011), D(n) ¼ 1 " 10300728. These massive numbers
beggar the ability of even the fastest computers to sort and model
them. Such subgraph isomorphism problems are NP-complete
(Karp, 1972).

But are all of these theoretical networks useful? Is there no way
to prune them down to a useful set? Unfortunately, there is no
ready shortcut, as a gedanken experiment will show. Imagine that
the network in Fig. 1B represents one version of an array of possible
networks connecting three different oscillators (P, Q, R); and that
the edges (i,j,k) and re-entrant loops (p,q,r) represent different
connection transfer functions. All 512 possible versions of this re-
entrant network, where R(n) ¼ 2nD(n), can do something inter-
esting. Some versions could be degenerate forms, but needn’t be.
All must be explored. The overwhelming complexity of the verte-
brate retina, even constrained by the simple networks we already
know, transcends inference by classical inverse solution methods
(Aster et al., 2005) such as physiology or computationalmodeling. If
we consider variations in cell numbers and patterns (Reese, 2008)
with time non-stationary synaptic weights, and further include
signal conditioning via local cable features, the solution space is
effectively infinite. But there is a direct, non-inferential solution:
connectomics. Connectomics simply maps the true networks.
Though this is a non-trivial computational effort, it is achievable in
reasonable time frames with existing technologies (Anderson et al.,
2009).

There are arguments against connectomics, nicely summarized
and largely rebutted by Morgan and Lichtman (2013), but one
theoretical modeling study has particular import for the network
diversity argument introduced above. Prinz et al. (2004) produced
over 20 million different models of the pyloric rhythm of the
crustacean 3-neuron stomatogastic ganglion using seven discrete
connections and awide range of parametric variants for connection
features. The authors concluded that over 4 million networks
generated proper pyloric rhythms and proposed that, rather than
specifying connection features during development or by discrete
rules, that some measure of output controlled network parameters
and many different biological tunings could suffice. In one sense
this further validates the argument that inverse solutions of com-
plex systems (and this is not a complex example at all) create so-
lution spaces too large to parse by physiological methods. One
topological motif may serve for many networks which is the “same
structure, many functions” argument summarized by Morgan and
Lichtman (2013) and exemplified by Prinz et al. (2004). However
there are some serious flaws in this argument. First, the ability to
create many model solutions does not mean they are all physio-
logically realizable. Second, even if many solutions can be theo-
retically realized, this is no proof that they are. Third, and far more
important, an example for a single motif that represents an or-
ganism’s entire architecture is clearly not applicable to complex
motifs that are repeated and interconnected to create a processing
system. Finally, the notion that topology is thus unimportant is
completely invalidated by known retinal architectures, the specific
patterns of rod and cone connections with different classes of bi-
polar cells and horizontal cells, the organization of the primate
midget/parvocellular connection stream and much more. The ar-
guments for the high variability of physiological parameters (input
resistence, resting potential) in various crustacean models more
likely suggests problems with stationarity than variable gene
expression. On the whole, the emerging complexities of motifs in

retinal networks (Lauritzen et al., 2012a) already argue far more
strongly for a “many structure, many function” model than one in
which topology is deemed of uncertain value.

4.5. Classification theory and connectomics

The synaptic resolution of electron optical imaging comes at a
significant price: the restricted ability to use molecular markers to
define cells given the chemical fixation and metallization required
to generate electron contrast. In the past, classification of neural
cells has largely been based on visual sorting of cell shape visual-
ized by Golgi impregnation or dye injection of cells. This approach
has recently been strengthened by the ability to extract single or
restricted populations via expression of markers like GFP driven by
nominally cell-specific promoters. These approaches, though
poorly quantitative so far and only marginally useful for predicting
networks, have nevertheless allowed converging estimates of cell
diversity in the retina (MacNeil et al., 1999a; b; Rockhill et al., 2002).
Further, structural or molecular profiling using cluster analysis
(Marc and Cameron, 2003; Marc and Jones, 2002; Marc et al., 1995)
support the rich diversity of neurons seen with purely shaped-
based analyses. On balance, the number of neuronal classes in the
retina is z 70 in mammalians and z120e150 non-mammalians.

Other ad hoc metrics for cell classification (e.g. cell diameters,
Scholl rings, fractals, etc.) have achieved little segmentation power.
In the background, however, formal theories of unsupervised
multidimensional classification were emerging in remote sensing
(Cover and Hart, 1967; MacQueen, 1967). Based on various imple-
mentations of clustering algorithms such as the K-means and iso-
data methods, these approaches showed that the dimensions of a
successful classification space should be orthogonal and may be
discoverable by using high-dimension sampling.

Recently, classification has been increasingly based on molecu-
lar signatures, mostly of cell-restricted proteins. In most cases,
however, classification has still been ad hoc rather than guided by
any formal theory of classification. While it is beyond the scope of
this review to develop a full theory of biological types, we can start
in the middle of such a theory based on the experimentally robust
notion that some molecular signature (proteomic, metabolic,
transcriptomic) is a surrogate index for the ultimate class (biologic
and mathematic) to which a cell belongs. Given this, some collec-
tion of values such as immunoprobe signals can be transformed to
N-space vectors and covariance matrices, parsed by classifier al-
gorithms and remapped into human-friendly images (Marc and
Cameron, 2003; Marc and Jones, 2002; Marc et al., 1995). Classifi-
cation itself can be summarized in the clustering relation:

S ¼ argminK
i¼1 n˛Sj

XX !!!Xn # mj
!!!
2

(3)

In clustering, xn represents the molecular signals for n di-
mensions, i.e. the number of molecular probes. Cells are sorted into
K ultimate classes by minimizing S over the classwise sums of data
and class centroid (m) differences. In other words, if the right set of
molecular probes exists, all the natural classes of cells can be found.
What is the “right” set of probes? Can it be realized? Is there more
than one? The key to understanding this approach is the coverage
afforded by multivariate signatures. There are over 70 classes of
cells in mammalian retina (neurons, glia, microglia, vascular cells)
and some are identifiable via surrogate univariate molecular tags,
e.g. choline acetyltransferase for cholinergic neurons, glutamine
synthetase for Müller cells, the calcium binding protein Iba1 for
microglia, etc. However, most labs struggle to label their tissues for
2e3 qualitative markers much less 70 quantitative univariate tags,
and most protein tags are incompatible with electron imaging.
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Univariate tags also have narrow coverage: i.e. one does not know
what has not been visualized. Conversely, multivariate tags like
glutamic acid provide signals in many different cells that differ
quantitatively (Kalloniatis et al., 1996; Marc and Jones, 2002; Marc
et al., 1990, 1995). By adopting a multivariate strategy such as
computational molecular phenotyping (CMP) it is possible to place
one or more signals in every cell (Fig. 2) in a TEM dataset (Anderson
et al., 2011b, 2009; Lauritzen et al., 2012a), so that even if a bio-
logically ultimate class cannot be extracted for each, at least a very
well-defined superclass cohort can be specified. More importantly,
it is possible to develop small molecule signature groups that are
both robust enough to classify every cell in a cohort and are
compliant with TEM (Anderson et al., 2009). Connectomics itself
provides additional features for classification via a framework for
characterizing all of branches and nodes in a cell and by tracking
the shapes and network maps for every cell along with its molec-
ular tags.

4.6. Network notation

Every network is a branched tree through which signals flow,
and rarely are networks closed circuits as in electronics. Thus the
signaling along chains needs to expressed in some notation and we
have devised the following: > denotes high-gain sign-conserving
synapses (e.g. mediated by ionotropic glutamate receptors); >m,
denotes high-gain sign-inverting synapses (mediated by mGluR6
glutamate receptors), >i, denotes low-gain sign-inverting synapses
(ionotropic glycine and GABA receptors), and :: denotes gap junc-
tion coupling. High gain transfers are assigned a nominal gain of n
and low gain inhibitory transfers are assigned a separate gain of p,
based on the idea that most excitatory gains are greater than 1
(Copenhagen et al., 1990; Yang and Wu, 2004) and inhibitory gains
are net fractional (Maltenfort et al., 1998;Wu,1991). Of course none
of these values were defined in rabbit retina, but it is likely that the
gains of excitation and inhibition are broadly similar across systems
and species. Even if that is not correct in all cases, some notation is
still required to begin modeling network properties and network
chain values can be updated as physiological data improve.
Coupling is denoted as c and is presumed to be attenuating. Total
chain gains are multiplicative. Thus the chain cone> m CBb> AC> i
GC has a total gain of n2p and a net sign-inverting polarity. It is
important to understand that each of these parameters is really a
vector: a collection of features that collectively determine the total
voltage gain between cells. Those features include numbers of
synapses, numbers of channels, unitary conductance, transmitter
type, receptor subunit composition, receptor and channel kinetics,
etc. A combination of connectomics and physiology for every cell
type will be required to fully parameterize network models. In the
meantime, network chain notation serves as a placeholder.
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