
4952 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2013

Robust Segmentation Based Tracing Using an
Adaptive Wrapper for Inducing Priors
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Abstract— Segmentation based tracing algorithms detect the
extent and borders of an object in a given frame IZ by propa-
gating results from frames I1 ≤z<Z . Although application specific
tracers have been forthcoming, techniques that automatically
adapt across applications have been less explored. We approach
this problem by learning a prior model on topological dynamics
that encourages segmentation transitions across frames that are
most likely for a given application. Further, we augment a generic
tracing technique with a locality sensitive prior derived from
dense optic flow fields for deformation guidance. The proposed
approach comprises two stages where the generic tracer initially
yields multiple segmentation transitions when its parameters are
perturbed, and the learnt topology prior subsequently propa-
gates high scoring segmentations. Because the learnt topology
model wraps around a generic tracer and adapts it by setting
its free parameters, the need for careful parameter tuning is
completely obviated. Through extensive experimental validation
in surveillance, biological and medical image datasets, we verify
the applicability of the proposed model while demonstrating good
tracing performance under severe clutter.

Index Terms— Tracing, parameter adaptation, electron
micrograph, Markov random fields.

I. INTRODUCTION

SEGMENTATION based tracing/tracking is a challenging
problem that merits attention due to its wide range of

diverse applications. The problem is inherently hard due to
wide variability in imaging modalities, background clutter,
illumination artifacts, occlusion and various distracters that
appear in different problem scenarios. As a result, developing
an overarching framework that would reliably work across
problem scenarios is an active area of research.

Motivating Example: Let us consider Figure 1 where the
segmentation from frame z − 1 is used as a prior for frame z.
Typical segmentation algorithms are formulated as the mini-
mization of an energy function E(y, P), parameterized by the
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Fig. 1. (Best Viewed in Color) Depending on the application of interest
(shown by scores generated by red, green and blue arrows) what constitutes a
good segmentation transition from frame z−1 to frame z using a segmentation
algorithm E(y, P) varies from one application to another. For instance, in
surveillance (red solid arrow) there is a prior of connectedness on the object of
interest thus preferring the segmentation transition generated by parameter P1.
In cell tracing (green dashed arrow), an object of interest is allowed to split
into two since it is a biologically plausible event leading it to prefer the
transition generated by P2. While tracing an expanding organ (blue dotted
arrow), there is a prior on increasing surface area, as opposed to splitting or
shrinking thereby scoring PN highly (low energy). The primary aim of this
work is to learn the notion of good segmentation transitions in order for the
algorithm to seamlessly adapt from one dataset of interest to another.

segmentation labels y and to algorithm’s parameters P . Pertur-
bation of these parameters P leads to multiple segmentations,
as shown in the middle column. Depending on the application
of interest what would constitute a good segmentation transi-
tion would vary. Let us consider three applications indicated
by the red, green and blue arrows drawn next to each other
and consider how they would vote for a good segmentation
transition. Note that though the segmenter is characterized by
an energy function, we utilize the notion of scoring (higher
scores map to lower energies), that is more intuitive to explain
the voting mechanism. The switch between scores and energies
will be obvious from context throughout the paper. The region
term is an orange color foreground and a dark blue color
background. The surveillance application (red solid arrow)
would contend that a person cannot split into two and there
is a smoothness of motion from one frame to another, thus
scoring parameter P1 highly (low energy). Tracing splitting
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Fig. 2. (Best Viewed in Color) Illustration of the proposed algorithm’s applicability in diverse scenarios. The first row is an example of tracking under
very poor video quality, illumination artifacts, shadows and occlusions. Rows 2-3 show cross-sectional images sampled from a retinal connectome acquired
using scanning section transmission electron microscopy. Some critical challenges that need to be overcome are capturing abrupt deformations across the
z-direction, and detection of topological changes such as splitting and merging of regions. Row 2 is an example of an object initially splitting into two regions
and further splitting into three. Row 3 illustrates an example of an object splitting on the right and merging on the left. The final row illustrates applicability
of the technique to tracking cardiac data in medical imagery.

cells (green dashed arrow) would allow splits as feasible
events in case of weak foreground likelihoods between the two
regions assigning P2 a high score (low energy). Finally, while
tracking a growing organ (blue dotted arrow) one could be
certain that the object cannot split or shrink, and is most likely
to expand giving PN the highest score (low energy). These
examples illustrate that good segmentation transitions vary
from one scenario to another and that it would be very useful
to have a framework that adapts from one scenario to another
with minimal human intervention. Figure 2 provides results
demonstrating the proposed model’s ability to adapt across
three different datasets: surveillance in a camera network,
organ tracking in medical imagery and neuronal structure
tracing in biological image sequences.

The primary contributions of this work include:
• A novel framework capable of inducing high level topol-

ogy priors for segmentation based tracing, addressed by

parameter adaptation (see Definition 1.1) of the segmen-
tation based tracer.

• Introduction of a novel locality sensitive prior (see Defi-
nition 1.2) modeling object deformations.

Definition 1.1: Parameter Adaptive Tracer - Consider a
segmentation based tracing algorithm operating on an image
sequence {I1, I2, . . . , IN }, characterized by a sequence of seg-
mentation energies {E(y1, P1), E(y2, P2), . . . , E(yN , PN )},
with one segmentation energy corresponding to every image,
and yi ∈ Y, Pi ∈ P denote the label and parameter vectors
respectively for the i th image. The segmentation based tracer
is parameter adaptive if parameters of the segmentation energy
corresponding to the i th image in the sequence are determined
by, Pi ∝ f (Pj ), 1 ≤ j < i , where f is a functional mapping
f : P → P .

Definition 1.2: Locality Sensitive Priors - The segmentation
based tracer possesses a locality sensitive prior if the spatial
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positioning of the object of interest in frames i > j ≥ 1,
indicated by segmentation labels y j , 1 ≤ j < i is utilized in
inferring the segmentation labels in frame i , yi ∝ g(y j ), i >
j ≥ 1, where g is a functional mapping g : Y → Y .

Note on Parameter Adaptation: Most segmentation and
tracing algorithms often have free parameters referred to as Pi
in Figure 1, that need to be tuned for applicability in a dataset
of interest. In the case of static images, these parameters
are often learnt from a database of annotated imagery. The
hope in such scenarios is that the learnt parameter vector
would yield good average performance across the test set.
However, a parameter that works well for an image of one
class may not work well for an image of another. Hence,
adapting parameters of a segmentation algorithm based on
image content is crucial. Thus far, we are not aware of any
major effort towards parameter adaptation in static image seg-
mentation. The situation in case of videos or image sequences
for learning parameters is more difficult due to the size of data
involved. Furthermore, a variety of distracters like illumination
artifacts, occlusion, scale variations, registration errors may
appear as one moves through the third dimension in an image
sequence. In such cases, having a fixed parameter for tracing
would lead to very poor results, as will become evident in
the following sections. For example, in video surveillance, a
parameter employed for segmenting an object when it is close
to the camera will not be the best parameter to use when it has
moved away from the camera and appears much smaller. More
importantly, when a tracing algorithm loses a target midway,
it is difficult to recover unless an operator intervenes to re-
initialize the algorithm. In contrast, a fully automatic tracing
algorithm must graciously adapt its parameters according to
the image content/immediate history to minimize chances of
a target loss. This work primarily focuses on the problem of
inducing high level priors using a module wrapping around
a generic tracer, and automatically adapting it’s parameters.
In summary, parameters of the base segmenter are utilized
to embed high level priors, and since these parameters are
automatically selected by the prior model in each frame there
is no need to hand tune them!

Topological Priors Through Parameter Adaptation: The key
observation we make in this work is that object dynamics
(across time in videos, or depth in 3D stacks) could be
made to influence parameter adaptation in image sequence
segmentation. Object dynamics refer to behavior of objects
(changes they undergo) as one progresses through an image
sequence. An example of object dynamics in surveillance or
cardiac tracking is the way objects expand or shrink from
frame to frame without any splits, while in tracing neuronal
structures it is the manner in which structures expand/contract
or split/merge. We refer to the above model as the topology
prior on structures of interest, which would be capable of scor-
ing the likelihood of a segmentation transition in frame z from
z − 1. Thus far, the two key insights of the paper are utilizing
the dynamics of an object to adapt parameters of an image
sequence segmenter, and modeling the notion of high level
topology priors to capture the behavior of structures across
time/depth. Figure 2 illustrates the ability of the proposed
model to capture massive object deformations and topological

changes. The ability to induce knowledge about the split/merge
behavior of a target is made possible by topological priors, and
is inherently different from shape/geometric priors as will be
discussed. As will become evident, the developed framework
can incorporate any generic high level prior (shape/geometric
etc.), but we restrict ourselves to topology priors for ease of
exposition. Further, as mentioned in the abstract, this work
introduces a novel locality sensitive prior derived from dense
optical flow fields for accurate tracing through an image
sequence, in order to strengthen the base segmenter.

In developing our algorithms (Section II-A) we empha-
size generating solutions that conform to priors as opposed
to global optimization. Hence, in cases where the feasible
parameter set size is large, algorithms yielding local solutions
are accepted for tractability. A preliminary version of this
work appeared in [1]. While we had proposed the idea
of parameters adaptation for Electron Micrograph tracing
in [1], the contributions relating to locality sensitive priors,
extension to surveillance/medical imaging, studying different
inference techniques, comprehensive experimental validation
and detailed explanations of the framework are completely
new.

II. BACKGROUND AND RELATED WORKS

There exists substantial prior work in segmentation based
tracing, with frameworks ranging from shortest path based [2],
watersheds [3], [4], random walkers [5], active contours based
snakes [6], geodesic active contours, vector flows [7], active
contours without edges [8], and discrete valued Markov Ran-
dom Fields (MRFs) inferred using graph cuts [9], [10]. The
aim of this paper is to present a method that is capable of
wrapping around a non-parametric segmentation technique,
thereby achieving two objectives: Firstly, the proposed tech-
nique is capable of embedding high level priors into the
tracing algorithm using free parameters of the base segmenter.
Secondly, free parameters present in the segmentation algo-
rithm are implicitly set by the topology control equations thus
annulling the need for hand tuned parameters. In other words,
the proposed framework is only applicable to a non-parametric
segmenter that implicitly handles topological changes like
random fields or level sets. For example, while tracking a cell,
biological priors on topology state that cells cannot subdivide
into three or more children. In surveillance scenarios, a single
human being tracked cannot suddenly split into 5 parts that
walk away in different directions. However, we are not aware
of an existing segmentation technique that inherently embeds
the above topological priors.

In this paper we adopt a segmenter based on Markov
Random Fields (MRFs) for illustrating a proof of concept
of our ideas. The following discussion provides background
on MRFs and introduces the notation used in this work.
Markov Random Fields are models formulated to solve the
image labeling problem. The aim is to label every pixel p
in the set of pixels P constituting the image with a label yp
from a label set L ∈ {1, 2, ...|L|}. Each pixel p resides in
a grid graph and has data x p associated with it. Depending
on the problem requirements, the number of neighbors with
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which a pixel can interact (or has direct edges to) defines the
size of its neighborhood (Np). The goal is to infer the pixel
labels conditioned on the data as efficiently and accurately as
possible.

The cost function employed for MRFs is given by:

E(y) =
∑

p∈P
Vp(yp) +

∑

p∈P,q∈Np

Vpq(yp, yq), (1)

where Vp(yp) = − log P(x p |yp), the negative log likeli-
hood function is commonly known as the unary or terminal
cost. Vpq(yp, yq) = λI exp

(
− ||x p−xq||

σ 2
I

)
δ(yp ̸= yq) is the

interaction or neighborhood cost modeling similarity between
adjacent pixels. Inferring yp from Equation 1 requires its
minimization, which is achieved by a mincut [11] on the
constructed graph. For purposes in this paper, the latent
parameter vector we wish to infer in every frame is given
by α = {λI , σI }. A detailed treatment of MRFs can be
found in Boykov et al. [9]. The distinction between commonly
used priors in segmentation is now clarified. Geometric priors
refer to image transformations (eg: liner, affine, projective).
Shape refers to an object’s appearance modulo rotation, scale,
translation and minor deformations. An example is the spher-
ical shape of a football. Topological priors are related to an
object’s physical appearance in terms of its connectedness. For
example, a single cell can split into a maximum of two new
connected components, whereas a soccer ball cannot be split
into two. Introduction of shape and contextual priors in MRFs
has received much attention in recent times [12], [13], [14].
Existing works in the MRF literature introduce topological
constraints such as connectedness in a segmentation algo-
rithm [15]–[17], and do not learn a topological model over
possible events such as split/merge/expansion/contraction. The
proposed technique encodes a topological prior into a non-
parametric segmentation framework, and thus differs from
deformable shape prior segmenters [18]. Peng and Veksler [19]
follow a related method for learning parameters using boosted
classifiers for static images.

A. Formulation of Contour Propagation

The main problem being addressed in this work is the
construction of a wrapper around a tracing algorithm that
embeds high level (topology) priors through parameter adap-
tation. Given the image Iz from frame z, segmentation Yz−1
from frame z − 1, the goal is to estimate segmentation labels
Yz and parameter αz in slice z. This is achieved by solving
two maximization (equivalently energy minimization) prob-
lems, namely Parameter Search: argmax

αz

P(αz |Yz, Iz, Yz−1),

and Region Search: argmax
Yz

P(Yz |αz, Iz, Yz−1). The two stages

are now defined and are illustrated in Figure 3:
• Parameter Search: Conditioned on the segmentations

P(αz |Yz, Iz , Yz−1), estimate most likely parameters. This
is our primary contribution, and Section III focuses on
modeling and inferring this quantity.

• Region Search: Conditioned on parameters
P(Yz |αz, Iz , Yz−1), estimate most likely segmentations.
This portion relates to augmenting a generic MRF

Fig. 3. Illustration of the algorithm flow for a single iteration of the
proposed approach. The prior contour is utilized to generate a prediction
using contour search. The prediction is used to assign scores (energies) to
multiple segmentations obtained by varying MRF parameters P using the
regional stability likelihood. It is useful to recall that higher scores correspond
to lower energy configurations. The parameter having maximum conformance
to topology priors is the segmentation result for the current slice, and acts a
prior for the next slice.

segmentation procedure with deformation priors for
reliably tracking non-rigid objects. This is a secondary
contribution of this paper, and presented in the
Section IV. Specifically, the MRF energy is modified
to Edef orm , comprising a modified unary term V def orm

p
that yields spatial localization and deformation guidance,
see Section IV (Equation 14).

This decoupling of the original problem into a segmentation
algorithm specific region search, and a generic wrapper in
the form of parameter search that can work with any non-
parametric segmenter leads to a tractable solution to topology
aware tracing. It is this plug and play nature of the construction
which makes the model adaptive and more generic than the
specific case of MRFs considered.

III. PARAMETER SEARCH - FORMULATION

The goodness score for the parameter search module can be
written as:

P(αz |Yz, Yz−1, Iz)

= P(Yz , Iz, Yz−1|αz)P(αz)

P(Yz , Iz , Yz−1)
∝ P(Iz |Yz, Yz−1,αz)︸ ︷︷ ︸

Data Quality

P(Yz |Yz−1,αz)︸ ︷︷ ︸
Plausibility

P(Yz−1|αz)

∝ P(Iz |Yz, Yz−1,αz)︸ ︷︷ ︸
Data Quality

P(Yz |Yz−1,αz)︸ ︷︷ ︸
Plausibility

(2)

The data quality stated above is measured by the histogram
intersection between f (Iz(Yz)) and f (Iz−1(Yz−1)). Note that
the intersection between two histograms hib, h jb, b ∈ {1, ..B}
with B bins is defined by

∑B
i=1 min{hib, h jb}. The function f

can be any function estimating the density of pixel intensity.
The simplest form (also used in this work) would be a
histogram of pixel values of foreground pixels from frame z−1
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and z. The topological priors (Plausibility) are modeled as a
state transition model as explained below. In the following,
note a change in notation from yp,z to Yz . The higher level
topology model works on a more global interpretation (Yz)
of the region as a collection of pixels, while the MRF works
at the level of pixels (yp,z) by factorizing their probabilities.
Without loss of generality, the discussions below refer to a
single region undergoing topological changes.

A. Parameter Search - The Topology Prior

In order to model the prior, the essence of the problem
reduces to scoring a pair of segmentations, Yz and Yz−1. In
other words, one has to predict how likely Yz was generated
from Yz−1. We construct a simple generative process explain-
ing topological changes in electron micrograph stacks. An
object (region) moving down a serial stack can undergo any
one of four topological events, namely shrinkage, expansion,
split, and merge. Recall that Yz and Yz−1 are binary seg-
mentation masks, with Yz resulting from Yz−1 due to either
an (1) expansion event from Yz−1 to Yz , (2) contraction
event from Yz−1 to Yz , (3) split event from Yz−1 to Yz , or
(4) merge event from Yz−1 to Yz . A shrinkage (expansion),
considered a regionally stable event is always assumed to
decrease (increase) a region’s surface area from one frame to
another. A split (merge) is considered a regionally unstable
event and is constrained by priors on the nature of split
(merge). The events are mutually exclusive, meaning they
cannot co-occur for a given region.

The first step is to detect which of the four events occurred
while Yz−1 transformed itself to Yz . This can be established
using the following two quantities that can be efficiently
implemented using morphological image processing. Recall
that Yz−1 is an estimate of the segmentation in slice z − 1,
and let ∪L

i=1Y i
z be the set of L regions generated in slice z

(utilizing parameter αz), where each of the L regions overlap
with Yz−1. Note that L > 1 only when a contour splits from
slice z − 1 to slice z.

• Relative Surface Area (d): The ratio of region areas from
the estimated region in frame z −1 and the L overlapping
region(s) produced by the segmentation algorithm on
frame z. Denoting the number of non-zero elements
(foreground pixels) in a binary mask by |.|, the relative
surface area is defined as,

d = |Yz−1|
∑L

i=1 |Y i
z |

(3)

• Region Stability (r): The function is constructed so that
if there is expansion or shrinkage (considered stable
transitions since the connected component is preserved)
from frame z − 1 to z, r evaluates to a non-negative
number, while it is negative for split or merge behavior.

r = −IS ∨ IM (4)

The variables IS and IM are indicator variables indicative of
a split or merge respectively, and ∨ refers to a logical OR
operation.

IS =
{

1, L > 1
0, L ≤ 1

IM =
{

1 − IS, d < 0.5
0, otherwise

(5)

Regionally stable event is a contour transition that com-
prises only expansions/contractions and leads to a non-negative
regional stability value.

The segmentation (region) transition prior is modeled under
the assumption that transitions corresponding to different topo-
logical events are normally distributed with respect to d . The
decomposition of probabilities with events T = {1, 2, 3, 4}
corresponding to shrinkage, expansion, split, and merge are
given by:
SHRINKAGE r ≥ 0, d ≥ 1,

P(T = 1) = N (d; 1 − µ1, σ1)H (d − 1)H (r)

EXPANSION r ≥ 0, d < 1,

P(T = 2) = N (d; 1 + µ1, σ1)(1 − H (d − 1))H (r)

SPLIT r < 0,IS = 1,

P(T = 3) = N (d; µ2, σ2)H (L prior − L)IS(1 − H (r))

MERGE r < 0,IM = 1,

P(T = 4) = N (d; µ3, σ3)IM (1 − H (r))

In the above equations, H refers to the Heaviside function
that evaluates to one if the argument is non-negative. Once
the event has been detected, we characterize the likelihood of
contour transition using Gaussian distributions, parameterized
by relative surface area d . µi , σi , where 1 ≤ i ≤ 3 are
parameters of a normal distribution learnt respectively for
shrinkage/expansion, split and merge events. L prior is the
maximum number of regions that can result from a split, as
observed from the training data. The state transition distribu-
tion modeling topological events is given by P(Yz |Yz−1), and
is a part of Equation 2.

The probability of a topological change occurring, without
any image dependent information is given by:

P(Yz |Yz−1) =
4∑

i=1

P(T = i) (6)

The parameters of the topology prior model
{µ1, σ1, µ2, σ2, µ3, σ3, L prior } are learnt using standard
techniques for fitting Gaussian distributions to training data.
In the tracing scenario, training data refers to a set of
pre-annotated image sequences where all events split, merge,
expansion and contraction are assumed to occur.

The above discussion assumes that splits and merges are
plausible events across the third dimension. However, in the
case of tracking the endocardium in MR sequences and people
in surveillance scenarios, there are two strong region level
priors that can be exploited. Firstly, there cannot be a topology
change from one frame to another. In other words, there is a
requirement that a single connected component must persist
through the image sequence. Secondly, there is a smoothness
in motion from one frame to another due to the nature of image
acquisition. In order to induce priors for this setting, the only
modification that is required from the Electron Micrograph
application is a change in the scoring function for segmen-
tation transitions. We propose the quality of segmentation
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Fig. 4. Illustration of the prior information available pertaining to topological
changes. The scoring function for segmentation transitions is constructed
based on the above illustration. See text for details.

(region) transitions for endocardium and person tracking to
be scored by the following expression,

P(Yz |Yz−1) = N (1 − µ1, σ1)H (r) (7)

In the above equation, a segmentation transition is rendered
infeasible if there is a split since there is a strong prior
on connectedness for tracking people and the endocardium.
Further, since the frame rate of image capture is high, the
mean of the distribution governing surface area stays close to
one, which is parameterized by {µ1, σ1}.

The topological model can be thought of as a dynamic
regularizer. For instance, splitting a region into numerous child
regions could serve to yield maximum data likelihood, but
is regularized by the topological prior on splitting. In some
applications, the topological prior enforces an infinity cost
for splitting (cardiac MR, human tracking) while in others
(electron micrograph tracing), it can be learnt from data.

B. Generating Multiple Segmentations

In the case of Markov Random Fields with clique size
two, stability of segmentation can be modified by varying
regularization λI and edge strength parameters σI defined in
Equation 1. It is well known that the output of segmentation
gradually changes from undersegmentation to oversegmen-
tation as the effect of the interaction and edge strength
parameters are varied. The greater the value of σI , larger
is the variance of the contrast sensitive potential Vpq thus
favoring only very strong edges, while reduction in value
begins favoring weaker edges. On a similar note, λI is
parameter controlling the relative importance of unary and
interaction terms. Since the parameter variations control the
regional stability of the segmentation outcome, we propose to
search over the 2D parameter spanned by αz = (σI ,λI )z for
most probable segmentations in slice z.

Some generic priors related to the problem at hand that need
to be formalized are (see Figure 4):

• Split/Merge Prior: The chance of a region splitting (merg-
ing) into (from) more than three sub-regions is extremely
low.

• Split Area Max: In case the area of a region in frame z
decreases in comparison to area in frame z − 1 (in case
of split or shrinkage), area of overlap between regions in
frame z − 1 and z must be maximized.

Fig. 5. An illustration of the higher level graphical model, the hidden
variables being the parameters that need to be inferred from the data. Each
node C, corresponds to a segmentation generated by varying MRF parameters.
Note that the cardinality of the discrete parameter space is D, resulting in
D segmentations per frame. The nodes (or emission probabilities) denote
likelihood of a particular assignment, while the directed edges (transition
probabilities) denote how plausible transitioning from one assignment to
another is.

• Merge Area Min: The chance of a region merging with
another region must result in a region with area around
the sum of the two parent regions.

• Split Detect: Split can be detected if there are multiple
overlapping connected components between frame z − 1
and z.

• Merge Detect: Merge can be detected if there is a massive
change in region areas between frame z − 1 and z.

• Data Likelihood Agreement: The agreement of data like-
lihoods between successive overlapping regions must be
maximized.

Inferring the proposed model in Eq. 2 yields the desired
pixel wise segmentation for every frame in the image stack.
Depending on the parameter state space, the inference tech-
nique adopted can vary.

C. Parameter Search - Naive Inference

Naive Inference is a greedy approach performing poste-
rior maximization over every frame. Assume M to denote
intermediate regions and % to be a fixed set containing
feasible parameters over which optimization is performed.
The aim is to pick a maximizer from %, and Algorithm 1
outlines the procedure for naive inference. In order to avoid
notational clutter, the MRF energy is expressed in terms of
region labels Yz in the ensuing discussions. We also note here
that dynamic programming [20] is a technique that does not
take decisions greedily, and waits for the entire data before
inference. Figure 5 illustrates the method. Each node in the
trellis at a particular frame z refers to a segmentation generated
by varying parameters of the MRF using region search. The
goal is to infer the most probable state sequence over the
entire image stack using Parameter Search. We experimented
with Dynamic Programming, but realized that the time taken
for computing global solutions make it impractical for our
application.

D. Parameter Search - Particle Filtering Inference

Particle Filtering [21] is a very effective state space filtering
technique that approximates the true posterior by a sum of
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Algorithm 1 Parameter Search: Naive Inference
Require: I1:N , Y1

for z = 2 : N do
for α ∈ % do

Y α
z = argmin

Mα
z

Edef orm(Mα
z |Iz , Yz−1,α), using

Equation 14

end for
{αz, Y ∗

z } = argmax
Y α

z ,α∈%
P(Iz |Y α

z )P(Y α
z |Yz−1) , using

Equation 6 in Equation 2

end for

weighted particles, see Algorithm 2. Particles in this case refer
to parameter vectors of the random field. In many scenarios,
it might not be feasible to enumerate the entire parameter
space for search. In order to address this issue, the idea is to
efficiently sample the parameter space for candidate particles
(parameter vectors) that maximize the posterior. Assuming
q(αz |αz−1) to be the system model governing how parameters
of the MRF change over frames, the goal is to infer hidden
parameters of the MRF αz . The basic idea behind particle
filtering approach is to draw from a posterior distribution
represented as a set of particles αi

z with corresponding weights
wi where 1 ≤ i ≤ K , where K is the number of particles. The
particles are sampled from q(αz|αz−1) = N (αz; αz−1, σp),
where σp is usually fixed.

The particle filtering approach is favorable compared to
greedy methods since they search the state space efficiently
and yield high accuracies with significantly lower compu-
tational cost. Our experimental findings confirmed this with
a particle filter operating using 30 particles outperforming a
fixed size greedy technique on the F-Measure for evaluating
tracing quality.

IV. REGION SEARCH - FORMULATION

The region search procedure comprises of a tracing algo-
rithm capable of generating good candidate traces for a specific
application. For the applications considered in this work (EM
tracing, cardiac and human tracking) we are not aware of an off
the shelf MRF tracer that produces good candidate solutions.
As a result, this section augments a generic MRF segmenter
with spatial and deformation priors to generate good candidate
traces that can be used by parameter search. Region search can
also be thought of as a black-box tracer, a name attributed
to the fact that the parameter search module does not have
any information on the internal workings of the tracer, except
having access to its free parameters.

The basic idea behind the region search is to segment
the object in frame z under the assumption that it must
be in the vicinity of its estimated location in frame z − 1.
This requires the introduction of a spatial variable (pixel
coordinate) exercising control over the labeling configuration.
The following discussion derives a probabilistic interpretation
of introducing a spatial localization variable into the likelihood

Algorithm 2 Parameter Search: Particle Filter Inference.
NOTE: α, w represent particles (MRF parameters) and their
weights
Require: I1:N , Y1, K , q (importance density)

αi
1 ∼ q(αz |αz−1) wi

1 = 1/K , 1 ≤ i ≤ K
for z = 2 : N do

Resample: {wi
z−1}1≤i≤K , wi

z−1 = 1/K ∀i ∈ 1..K
for i = 1 : K do

αi
z ∼ q(αz|αz−1)

Y αi

z = argmin
Mz

Edef orm(Mz |Iz, Yz−1,αi
z), using

Equation 14

wi
z = wi

z−1
P(Iz |Y αi

z
z )P(Y

αi
z

z |Yz−1)
q(αi

z |αz−1)
, using Equation 6 in

Equation 2
end for
Normalize Weights wi

z = wi
z∑K

j=1 w
j
z
, 1 ≤ i ≤ K

α∗
z = ∑K

i=1 wi
zα

i
z

Y ∗
z = argmin

Yz

Edef orm(Yz |Iz , Yz−1,α∗
z )

end for

construction. In the context of tracing, it can be looked at as a
localized shape estimate constraining excessive deformations
of the object from one frame to another. Please note that Xz
(feature descriptor constructed from Iz) will be used in place of
Iz in this section to stay consistent with MRF terminology. The
posterior distribution of the random field can be decomposed
as follows:

P(Yz |Xz, Yz−1,αz)

= P(Yz−1, Xz ,αz |Yz)P(Yz)

P(Yz−1, Xz,αz)

∝
∏

p

P(yp,z−1, x p,z|yp,z)

∝
∏

p

P(x p,z |yp,z−1, yp,z)P(yp,z−1|yp,z) (8)

Ignoring constants, the maximization problem of the random
field now reduces to Y ∗

z = argmax
yz

P(Yz |Xz, Yz−1) thus yield-

ing a maximum likelihood estimate given by:

Y ∗
z = argmax

Yz

∏

p

P(x p,z |yp,z−1, yp,z)P(yp,z−1|yp,z) (9)

We now have to model P(yp,z−1|yp,z) for spatial localization
to take effect, and we accomplish the same using dense optical
flow fields.

The proposed formulation achieves accurate spatial localiza-
tion by introducing dense flow fields that accurately capture
object deformations from one frame to another. Denoting the
dense optical flow field between the two frames (Iz−1 and Iz)
by u(Iz , Iz−1), it can be shown [22] that the motion residual
or shape deformation reduces to a dot product between the
gradient of a signed distance function φz−1 of Yz−1 with the
flow field u, and is given by ez = uT (Iz, Iz−1)∇φz−1. φz−1
is a smooth function evaluating the shortest path magnitude
from any pixel p to the region boundary.
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Motion Residual: Formally, motion residual is derived from
optical flow fields, and can be defined as the vector field that
displaces a target contour in frame z − 1 to its current form
in frame z. In other words, it is a function that transforms a
contour in frame z − 1 to frame z by utilizing information
from images Iz−1 and Iz . Considering the estimate a region
in the current frame z to be a signed distance function φ̂z , it
can be proved using a brightness constancy constraint on the
signed distance functions (omitting higher order terms in the
resulting Taylor expansion) that φ̂z = φz−1 − ez .

We now propose the following form for P(yp,z−1|yp,z),
utilizing estimates obtained from dense flow fields. The fol-
lowing model biases likelihood potentials to assume shapes
that resemble previous segmentations. Intuitively, Equation 9
aims to localize the search for segmentation in slice z in
the vicinity of segmentation in z − 1. For this purpose, a
signed distance function φz assigns a very low probability to
foreground if a pixels distance from contour in z − 1 is large,
while assigning a high probability score to foreground to pixels
close to contour in z − 1, and vice-versa for the background.

It is useful to note here that φ̂z = φz−1 − ez is derived from
the motion residual ez , thus making the spatial localization
deformation aware:

P(yp,z−1|yp,z) = exp

(

− φ̂p,z H (φ̂p,z)

σs

)

yp,z

+
(

1 − exp

(

− φ̂p,z H (φ̂p,z)

σs

))

(1−yp,z) (10)

where σs refers to a smoothing parameter for the region
prediction in frame z and H is a Heaviside function defined
by,

H (x) =
{

0 if x < 0
1 if x ≥ 0

(11)

The unary potentials in terms of the MRF cost function are
now changed to,

∑

p

V deform
p (yp) = − log

∏

p

P(x p,z, yp,z−1|yp,z)

= − log
∏

p

P(x p,z |yp,z, yp,z−1) (12)

− log
∏

p

P(yp,z−1|yp,z)

=
∑

p

V data
p (yp,z)︸ ︷︷ ︸

Data Likelihood

+ V spatial
p (yp,z)︸ ︷︷ ︸

Displacement Cue

(13)

The likelihood probability can be written as
P(x p,z, yp,z−1|yp,z). This contains a term of data conditioned
on labels in current and previous frames. By chain rule of
probability the likelihood can be decoupled into a purely
appearance based term P(x p,z |yp,z, yp,z−1), and one term
based on spatial localization P(yp,z−1|yp,z). In other words,
the appearance term models how an object looks like while
the spatial localization term focuses on probable pixel
locations of the object of interest. The augmented tracer with
deformation guidance is characterized by the energy function

Fig. 6. Results employing the proposed region search procedure. Parameters
are not inferred online to demonstrate the stand alone applicability of the
locality sensitive displacement prior. Notice the ability of the algorithm to
latch on to rapid object deformations and appearance variability.

defined by:

Edeform(yz) =
∑

p∈P
V deform

p (yp,z)+
∑

p∈P,q∈Np

Vpq(yp,z, yq,z),

(14)

Figure 6 illustrates the working of the region search proce-
dure outlined in Algorithm 3. As can be seen, the technique
does a fair job in keeping track of the object as once moves
through the z-direction. Now that the base tracing scheme
has been augmented with a strong spatial localizer providing
deformation guidance, we turn our attention to introducing
topological priors using parameter search.

V. EXPERIMENTAL VALIDATION

This section initially presents experimental results on (V-A)
Electron Micrograph data. Subsequently, experiments on endo-
cardium tracking and surveillance are presented (V-B).

A. Experimental Results on Electron Micrograph Tracing

There has been a lot of interest in Electron Micrograph
segmentation and tracing [5], [10], [23]–[26]. The primary
motivation behind the proposed technique is the 3D tracing
problem in retinal connectome data [27], a problem (data) not
solved by any of the above referred techniques. The data in
consideration comprises of rich textures and edge profiles that
need to be jointly modeled, along with the need for handling
abrupt deformations and topological changes. This section
clearly demonstrates advantages of using the proposed model
using extensive qualitative and quantitative validation.

The electron micrograph data contains distractions that
could be reduced using established algorithms. We employ
adaptive histogram equalization as a preprocessing step. Con-
sidering x z

p to be a feature response at pixel p comprising
smoothed intensity values after Gaussian filtering with multi-
ple scales, the unary potential is formed as, Vp(yz

p = 1) =
−log(p(xz

p|FGz−1 )), Vp(yz
p = 0) = −log(p(xz

p|BGz−1 )).
Here FG and BG refer to the set of foreground and background
pixels respectively segmented from the previous frame. This
captures the notion of multi scale neighborhood averages
with a total of three scales (S = 3) employed for the
Gaussian kernel, while the costs were evaluated using standard
histogram techniques. In the case of surveillance feeds, color
histograms in RGB space were utilized to construct foreground
and background potentials.

A total of 9 image stacks were used in quantitative vali-
dation. Seven of these image stacks (6 Electron Micrograph
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Algorithm 3 Tracking using Region Search
Require: Iz , Iz−1, yz−1
1: for z = 2:N do
2: em = uT (Iz, Iz−1)∇φz−1
3: φ̂z = φz−1 − ez
4: Compute Vp as discussed
5: y∗

z = argmin
yz

Edeform(yz) from Equation 14

6: end for
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Fig. 7. (X-axis: Frame Number, Y-axis: Parameter Value) Observe parameter
variations (each curve corresponds to a different stack) resulting from likeli-
hood maximization. (Left) Contrast parameter variations over z for electron
micrograph stacks, (Right) Interaction weight variations across the stack.
As is evident a single fixed parameter, even if learnt offline would not
consistently have high scoring segmentation transitions. The wide variations
in the parameter vector justifies need for the proposed method.

+ 1 Synthetic) had a splits or merges, which are much more
challenging to detect than simple expansion/contraction. The
other two image sequences are from cardiac data. On an
average the F-measures of proposed technique is greater by
more than 10 percent by nearest competing method. Further,
in spite of existing metrics not explicitly accounting for
split/merge error the proposed method still has a significant
10 percent lead. Penalizing split/merge errors would still lead
to much lower performance on prior techniques.

Figure 7 demonstrates the variations in parameter values
while segmenting different stacks in the connectome. The
wide parameter variations in maximizing the segmentation
transition score provides intuitive justification for flexibly
tuning parameters across the stack. In order to ensure a fair
comparison, the proposed technique is employed to generate
a list of optimal parameter values, and the average of opti-
mal parameters are used for the corresponding region search
tracing procedure. This would be the best case scenario in
comparison to hand tuned or random parameter initialization
in the first frame.

A proof of concept for the proposed approach is illustrated
using synthetic image sequences generated by hand to mimic
topological changes typical in real data. As shown in Figure 8,
a random shape having a black color is corrupted throughout
the domain using random Gaussian noise of high variance.
This makes sure that the data term (spatial homogeneity) of
the foreground object is non uniform justifying the use of
MRFs. Figure 8 illustrates a comparative performance between
a traditional level set tracker and the proposed locality con-
strained and topology aware tracing. As can be observed from
the figure, the topology aware model consistently outperforms
the other models. The level set tracker implicitly handles
topological changes, but begins splitting into many smaller
regions to explain the data better. The first row shows results

Fig. 8. (Best Viewed in Color) Row1 (Level Set Tracker with low
regularization), Row2 (Level Set Tracker with high regularization), Row3
(Region Search), Row4 (Topology Aware MRF) show results sampled from
different frames in a synthetic data. Since the top three rows do not have
topological priors, they are allowed to undergo arbitrary topological changes.
The last row shows the applicability of the topology aware MRF having the
best quantitative performance among all methods. In the above figures, red
contours are ground truth, while white contours are generated by the respective
algorithms.

of level sets with a small regularization parameter, while the
second row demonstrates results with higher regularization.
Results from applying the standalone region search tracer are
shown in the third row, where the region again begins splitting
towards the end of the stack (frame c-d). In comparison, the
proposed model in the fourth row performs the best in adhering
to required topological dynamics.

For performance analysis, we consider the F-measure of the
segmentations provided by a level set trackers and proposed
MRF models in Figure 10. Note that the F-measure is defined
by F = 2P R

P+R , where precision (P) is the ratio of true positives
to the sum of true positives and false positives, while recall (R)
is the ratio between true positives and sum of true positives
and false negatives.

Sample Electron Micrograph images to be segmented are
is shown in Figure 9. The main difficulties in segmentation
of Electron Micrograph stacks are massive deformations,
abrupt topological changes and extremely noisy textures. It is
assumed that the object location is provided to the algorithm
in the first frame of a stack to initialize tracing. An important
clarification pertains to the usage of frame-frame versus true
3D segmentation. Usually 3D segmentation models have high
memory complexity and require a homogenous data term
through the volume. This is not guaranteed in the applica-
tion of interest due to severe noise in the foreground data
term.

Figure 9 illustrates the working of the entire model on com-
plex topological changes. Observe massive object elongation
that the algorithm is able to trace with the region search
tracer and subsequently utilize the segmentation transition
scores to detect topological changes and trace each region
over depth. Figure 10 reports evaluation of proposed scheme in
comparison to traditional methods (including traditional MRF
cost and level set based trackers) on synthetic data and sampled
stacks from the connectome. Significant improvements in the
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Fig. 9. (Best Viewed in Color) Results indicating the applicability of the
full model (region/parameter search). Each row in the above figure illustrates
performance of the algorithm on regions sampled from different parts of the
connectome volume. Observe the method’s ability to latch on to topological
events including significant object deformations and splitting.

F-measures in comparison to state of the art justify the need
for the proposed technique.

B. Experimental Results on Endocardium Tracking and
Surveillance

Endocardium Tracking: The proposed method reliably
(Figure 11) tracks the deforming surface of the heart through-
out the image sequence. Non-adaptive MRFs perform well
when the object sizes are fairly constant. For example, a
particular parameter setting might work when the endocardium
relaxes (has large area) and might fail during contraction (has
small area). Automatic parameter tuning helps overcome this
drawback by automatically adapting parameters across the
image sequence. Ground truth data that comes with the dataset
is used to validate performance of the algorithm. Table I
and Table II illustrate comparative performance of the non-
adaptive MRF model with the proposed approach. The pro-
posed approach yields very promising results in comparison
to the non-adaptive MRF which at times completely loses the
target, see Table II where the non-adaptive model loses the
difficult target after frame 6.

We would like to point out that the proposed method
performs better on the average with the easy target too.
The proposed technique searches over a very large parameter
space, as opposed to conventional schemes that have fixed
parameters. In some very rare scenarios, it is possible that the
proposed approach might get stuck in a locally optimal solu-
tion, while a global solution corresponds to the fixed parameter
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Fig. 10. (X-axis: Frame Number, Y-axis: F Measure), (Top Left) Performance
of proposed technique (red-solid) on the noisy synthetic dataset (Figure 8) is
compared to a level set tracker with high (magenta-dotted) and low (blue-
dashed) regularization parameters. (Top Right - Bottom) F-measure plots
comparing proposed topology aware model (red-solid) with the standalone
region search tracer (magenta-dotted) and level set tracker (blue-dashed). As
can be observed, the topology aware model consistently outperforms the stand
alone region search tracer and level set based trackers.

TABLE I

EASY TARGET ON CARDIAC SEQUENCE: THE PROPOSED TECHNIQUE

PERFORMS BETTER THAN TRADITIONAL TECHNIQUES

THUS YIELDING MORE ACCURATE SEGMENTATIONS

RESEMBLING THE GROUND TRUTH

TABLE II

DIFFICULT TARGET ON CARDIAC SEQUENCE: THE PROPOSED

TECHNIQUE COMPREHENSIVELY BEATS TRADITIONAL APPROACHES

SINCE TRADITIONAL APPROACHES LOSE DIFFICULT TARGETS

VERY EARLY ON AND CANNOT RECOVER

setting held by conventional methods. Frames 3 and 4 for the
easy target in Table II are indicative of the above phenomenon.

Surveillance: Tracking people in surveillance feeds is a
challenging problem due to illumination artifacts, occlusion,
shadows and clutter. Smoothness priors across time can
be efficiently utilized by the proposed framework to track
targets reliably across video feeds. Figure 12, 13 illustrates
the applicability of the proposed model to accurately track
and resist occlusions in challenging outdoor scenarios, along
with the drawbacks of traditional methods. It is useful to
note here that traditional background subtraction or optic
flow based trackers would fail due to contour leakage caused
by shadows/illumination artifacts and packet drops in video
transmission.

Failure Scenarios: The algorithm is designed to tolerate
minor registration errors due to the computation of dense
flow fields. However, this relies on the manner in which
optical flow is computed, and it may not always be possible
for the algorithm to directly control. In our implementation,
dynamic programming does not seem to provide a significant
performance gain, though it is theoretically more sound than
the greedy method. This issue warrants further investigation.
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Fig. 11. (Best Viewed in Color) Performance of proposed technique on time varying cardiac data. The primary challenge is in tracking a deforming
surface where the topology constraint is that an endocardium cannot split into smaller structures at any point in time. During the process of maximizing the
segmentation transition scores, segmentation labels that do not conform to a single connected component are eliminated as infeasible.

Fig. 12. (Best Viewed in Color) Applicability of the proposed method in outdoor surveillance. The top row illustrates application of the traditional approach
without parameter adaptation. As can be observed, a contour leak in one frame keeps propagating as tracking progresses. On the other hand, the adaptive
model (bottom row) ensures a smooth segmentation transitions in the time direction thus exploiting obvious priors available in tracking scenarios.

Fig. 13. The above figure illustrates ability of the proposed model to resist occlusions that commonly occur in cluttered scenes.

VI. CONCLUSION

In summary, this paper has presented an algorithm to make
tracing algorithms topology aware. The region search tracer
constrains region displacement across the z direction, while
the parameter search procedure embeds learnt topology priors.
The algorithm does not resort to complex graph constructions
and exploits the inherent free parameters of traditional MRFs
for stack segmentation using the region search tracer. The
highlight of the proposed technique lies in using free para-
meters (which are otherwise hand tuned) for detecting topo-
logical changes using an efficient search procedure. Promising
experimental results were presented on ssTEM stacks, cardiac
image sequences and surveillance video. Utilizing higher order
potentials [28] is part of future work. Higher order models
aid in modeling higher order spatial interactions and can be
used for embedding topological priors, an aspect that has been
unexplored in the literature. Finally, extending the proposed
approach to other microscopic imaging modalities like confo-
cal/light microscopy is another promising future direction.
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