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Abstract 

Retinal degenerative diseases, such as retinitis pigmentosa, are generally thought to 
initiate with the loss of photoreceptors, though recent work suggests that plasticity and remodeling 
occurs prior to photoreceptor cell loss. This degeneration subsequently leads to death of other 
retinal neurons, creating functional alterations and extensive remodeling of retinal networks. 
Retinal prosthetic devices stimulate the surviving retinal cells by applying external current using 
implanted electrodes. Although these devices restore partial vision, the quality of restored vision 
is limited. Further knowledge about the precise changes in degenerated retina as the disease 
progresses is essential to understand how current flows in retinas undergoing degenerative 
disease and to improve the performance of retinal prostheses. We developed computational 
models that describe current flow from rod photoreceptors to rod bipolar cells (RodBCs) in the 
healthy and early-stage degenerated retina. Morphologically accurate models of retinal cells with 
their synapses are constructed based on retinal connectome datasets, created using serial 
section transmission electron microscopy (TEM) images of 70 nm-thick slices of either healthy 
(RC1) or early-stage degenerated (RPC1) rabbit retina. The passive membrane and active ion 
currents of each cell are implemented using conductance-based models in the Neuron simulation 
environment. In response to photocurrent input at rod photoreceptors, the simulated membrane 
potential at RodBCs in early degenerate tissue is approximately 10-20 mV lower than that of 
RodBCs of that observed in wild type retina. Results presented here suggest that although 
RodBCs in RPC1 show early, altered morphology compared to RC1, the lower membrane 
potential is primarily a consequence of reduced rod photoreceptor input to RodBCs in the 
degenerated retina. Frequency response and step input analyses suggest that individual cell 
responses of RodBCs in either healthy or early-degenerated retina, prior to substantial 
photoreceptor cell loss, do not differ significantly. 
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1. Introduction 

Signal processing through retinal circuitry allows for propagation of visual primitives out of 
the eye to the cortex for visual perception. Retinal bipolar cells collect postsynaptic output from 
photoreceptors and transfer processed information to horizontal, amacrine and ganglion cells 
[Kolb, 2003, Bloomfield, et al., 2001]. While amacrine cell processes remain within the retina, the 
axons of ganglion cells form the optic nerve carrying the visual primitives to other areas in the 
brain for further processing. Retinal degenerative diseases, such as retinitis pigmentosa (RP) or 
age-related macular degeneration (AMD), cause progressive damage to the retina. The retinal 
degeneration initiates numerous retinal remodeling processes that affect both neurons and glia 
[Pfeiffer, et al., 2020a]. In the early phases of degeneration, photoreceptors exhibit hallmarks of 
cellular stress, followed by photoreceptor cellular death. As the disease progresses and 
photoreceptors are lost, extensive remodeling of retinal networks occurs. It has been 
hypothesized that the absence of presynaptic signals from photoreceptors results in 
morphological as well as circuit and functional alterations in the surviving cells [Marc, et al., 2007, 
Jones, et al., 2013, Pfeiffer, et al., 2020b]. A primary component of retinal remodeling is the 
process of rewiring, where aberrant processes (neurites) grow from dendrites, axons, and somas 
of surviving neurons [Jones, et al., 2013]. Functionally, following the complete loss of 
photoreceptor inputs, an oscillatory behavior has been observed in degenerate retina that leads 
to spontaneous spiking of ganglion cells [Trenholm, et al., 2015, Ivanova, et al., 2016]. In the later 
phases of degeneration, physical relocation of surviving neuron somas, and topological 
restructuring of dendrites and axons occurs, along with improper connectivity, eventually leading 
to extensive neuronal death and subsequent total vision loss. 

Visual prosthetic systems have been developed to treat retinal degenerative diseases, 
including AMD and RP [Weiland, et al., 2014, Farnum, et al., 2020]. While cortical implant based 
visual prosthetic systems, which bypass the retina completely and directly stimulate the visual 
cortex, could be useful in the case of several types of vision diseases, these systems are still 
under development [Farnum, et al., 2020, Niketeghad, et al., 2019, Kosta, et al., 2018, Troyk, 
2017, Fernandez, et al., 2017, Lowery, et al., 2017] and the principles of how to encode visual 
information that would mimic ganglion cell activity are unclear. In contrast, retinal implant based 
prosthetic systems aim to stimulate the surviving retinal circuitry by applying external current via 
implanted electrodes, utilizing the existing ganglion cell connections and outputs to the central 
nervous system, as well as other nuclei involved in vision and paravisual functions. Multiple 
epiretinal prosthetic systems have passed clinical trials and were shown to be effective in 
restoring useful vision [Ahuja, et al., 2013, Ayton, et al., 2014]. However, the quality of restored 
vision is limited and not comparable to the percepts achieved by a healthy retina. There are a 
number of proposed solutions, but improving the performance of retinal prostheses, relies on 
further knowledge about precisely what changes within the circuitry and how current flows in the 
retina as disease progresses. 

Several computational modeling approaches have been employed to better understand 
retina function and interaction with prosthetics [Guo, et al., 2014]. Single-compartment 
conductance-based models have been created for different classes of retinal cells [Usui, et al., 
1996, Publio, et al., 2009, Fohlmeister, et al., 2010]. These models simulate the biophysics of 
cells using equivalent electrical circuits and are designed to reproduce the results obtained from 
electrophysiological recordings of retina. Other studies have employed continuum medium 
models based on the effective medium properties of the neural population, ignoring individual 



 

cells [Abramian, et al., 2014]. Yet another modeling approach is to build abstractions of retinal 
circuitry including nonuniform sampling and adaptation [Shah, et al., 1996]. Although these 
modeling approaches help provide useful insights, most of these studies either use single-
compartment models or artificial cell morphologies. However, it has been shown that morphology 
plays a critical role in the functional behavior of a cell and its network. For example, ganglion cells 
with distinct dendritic types perform specific functions important in model accuracy [Guo, et al., 
2013]. The primary challenge in building a model with morphological details is the sparse 
availability of the morphology of retinal cells within the greater context of knowing the precise 
retinal neural network topology. 

Further, multi-scale modeling strategies have been used by our group and others [Guo, et 
al., 2014, Loizos, et al., 2014, Loizos, et al., 2018, Stang, et al., 2019, Kosta, et al., 2020, 
Paknahad, et al., 2020a, Paknahad, et al., 2020b] to computationally model the vertebrate retina 
and its behavior in the presence of electrical stimulation. In our past work, we created a multi-
scale model for retinal stimulation via a multi-electrode array, using cell morphologies and 
synaptic information from a retinal connectome of a healthy rabbit retina [Loizos, et al., 2018]. To 
replicate the degenerated retina more closely, several disease-related physiological and 
anatomical features were included in the model, such as reducing the thickness of various retinal 
layers and adding local feedback circuits between amacrine cells and cone bipolar cells 
(ConeBCs) to incorporate the spontaneous activity as observed in the degenerated retina [Loizos, 
et al., 2018]. Even though the model was artificially revised to mimic behavior of degenerated 
retina, it primarily relied on cell morphologies and synaptic connections based on a connectome 
database of a healthy retina. 

With the help of retinal connectomics approaches, we have the opportunity to build 
morphologically and topologically realistic models of normal retinal networks [Anderson, et al., 
2011a, Marc, et al., 2013], as well as diseased retinal networks [Pfeiffer, et al., 2020b, Pfeiffer, et 
al., 2020c]. Retinal connectomes are generated by sectioning the retina tissue in 70 nm-thick (or 
thinner) slices, capturing high-resolution images (2 nm/pixel) of each slice, annotating all cells 
and their synaptic connections, and then rendering a 3D reconstruction of these annotations 
across all slices along with diagrams describing network topologies [Marc, et al., 2013]. Such 
models based on measured morphology and quantification of synapses extracted from the 
connectome of actual diseased retina are highly valuable to modeling efforts. The understanding 
of the functional changes in the degenerated retina through accurate models of retinal cells and 
network can significantly impact the development of the next generation of retinal treatments and 
prosthetics. Our ultimate goals are to combine the detailed neural network model of degenerated 
retina with a bulk retina tissue model to analyze current flow through complete models of retina, 
as well as model the interaction of the retina with prosthetic electrodes by computing fields 
generated by electrodes. These models will not only provide a tool to understand various features 
of retinal networks, but they will serve as the most realistic tool available for analyzing and 
designing retinal prosthetic devices by investigating the retinal response to various stimulation 
paradigms, such as different stimulus waveforms and electrode designs. 

In this work, we develop computational models to study changes in signal processing in 
early-stage degenerate retina with respect to healthy retina. Specifically, using our recently 
developed connectome of early-stage degenerated retina (RPC1) [Pfeiffer, et al., 2020b, Pfeiffer, 
et al., 2020c] and previous connectome of healthy retina (RC1) [Marc, et al., 2013], we built 
separate computational models of the current flow at the first visual synapse, from rod 



 

photoreceptors to rod bipolar cells (RodBCs), of the healthy (RC1-RodBCs) and degenerated 
retina (RPC1-RodBCs), and analyzed the individual RodBC responses. We created 
morphologically accurate models of RodBCs and used conductance-based modified Hodgkin-
Huxley models [Hodgkin, et al., 1952] and cable theory to implement the biophysical behavior of 
retinal cells in the Neuron simulation environment [Hines, et al., 1997]. Passive cell membranes 
and active ionic currents are represented by equivalent electrical circuits and equations, which 
are solved at every time step of the simulation. We used a mathematical model of photocurrent 
injection to represent the light stimulus and transduction of light at rod photoreceptors. We 
leveraged the developed models to analyze the responses of RPC1-RodBCs to photocurrent 
input and compare against that of RC1-RodBCs. Additionally, we examined differences in RPC1-
RodBCs and RC1-RodBCs with respect to step input and frequency response. 

2. Retinal Connectomics 

Synaptic level connectomics approaches are designed to capture the complete network 
graph representation of the neural network of a region of neural tissue. These graphs are 
constructed with the help of ultrastructural imaging techniques, image processing algorithms, data 
assembly, classification theory, and graph theory [Marc, et al., 2013]. The retinal tissue in these 
connectomes and pathoconnectomes (connectomes of pathological tissues) derives from serial 
70 nm-thick slices, captured with high-resolution transmission electron microscopy (TEM) imaging 
approaches. The magnified images of tissue slices are then manually annotated for sizes and 
locations of various types of cells, recording the morphology of the cells and identifying their 
subcellular components (such as pre- and postsynaptic densities, ribbon synapses, gap 
junctions). These annotations are stored in a large-scale database, and specific data of a cell, 
synapse, or network across all the slices are extracted with the help of data mining tools, such as 
Viking Viewer [Anderson, et al., 2011b], CellSketches, Tulip [Auber, 2010], or Graffinity [Kerzner, 
et al., 2017]. These approaches provide the real cell morphology, network topology, and exact 
quantification of the location, number and size of synapses. 

We are using a connectome of a healthy rabbit retina (RC1) [Anderson, et al., 2011a, 
Marc, et al., 2013] as a control. Retinal cells, including different types of bipolar cells, amacrine 
cells, and ganglion cells, are annotated, and synaptic connections between cells are quantified. 
To observe the changes in the retina with the progression of degenerative disease, we are 
developing connectomes of pathological tissues of four stages of degeneration [Pfeiffer, et al., 
2019, Pfeiffer, et al., 2020c]. The first pathoconnectome (RPC1) is developed using an early-
stage degenerated ten month-old transgenic (Tg) P347L rabbit retina model of RP [Pfeiffer, et al., 
2020b, Pfeiffer, et al., 2020c]. In the selected region of the retina, the thickness of the outer 
plexiform layer is found to be reduced by approximately 50%. The degeneration of rod 
photoreceptors is initiated, though many are found to be intact. RodBCs extend neurites to the 
terminals of cone photoreceptors as the rod photoreceptors degenerate [Pfeiffer et al., 2020b, 
Cuenca, et al., 2004, Peng, et al., 2000]. Further, abnormal network connections between all 
RodBCs and AII glycinergic amacrine cells are observed in RPC1 [Pfeiffer, et al., 2020b]. As we 
continue to construct connectomes of the next stages of degeneration, we plan to computationally 
model the networks of various stages of the degenerated retina. In this manuscript, we focus on 
computational modeling and comparison of RodBCs of RC1 and RPC1 to capture early changes 
that could potentially shed light on the possibility of developing early treatment strategies, prior to 
substantial cone photoreceptor cell and bipolar cell loss. 

 



 

3. Models and Methods 

3.1 Data Extraction 

 To build the computational model, we extracted the morphology and topology data of 
RodBCs from RC1 and RPC1 connectomes. Custom Python scripts, along with Tulip [Auber, 
2010] and vaa3D software [Peng, et al., 2014], were used for data extraction, visualization, and 
interpretation. For neuronal modeling, the extracted morphology data was post-processed in order 
to make it compatible with the Neuron software environment [Hines, et al., 1997]. The morphology 
of each cell is represented as a graph and refined such that there is not more than one root node 
and no separate sub-graphs. Therefore, broken edges between sub-graphs that occur due to 
missing annotations are bridged with the help of custom MATLAB scripts. Then, refined 
morphologies are converted in SWC format and imported in the Neuron simulation environment 
for simulations. 

The RPC1 connectome contains 17 annotated RodBCs; however, only 8 have axonal and 
dendritic arbors contained entirely within the connectome volume. We compared these 8 RPC1-
RodBCs (with Cell IDs 822, 933, 1001, 1069, 1232, 1243, 1537, and 25001 of RPC1 data) against 
4 RC1-RodBCs (with Cell IDs 519, 5017, 7054, and 8749 of RC1 data). Fig 1 presents the 
morphology of these cells, with somas in blue, dendrites in black, axons in yellow, and axon 
terminals in red color. Some of the RPC1-RodBCs have abnormally longer branches in their 
axonal arbors compared to RC1-RodBCs. Next, the synapses between these RodBCs and rod 
photoreceptors are extracted from the connectomes. The RC1 connectome does not contain the 
outer plexiform layer, and therefore, the RodBC dendritic arbors and rod photoreceptor inputs are 
not present. To complete the cell morphology of RC1-RodBCs, we have patched the cells using 
RPC1-RodBC dendrites that were the most similar in morphology to those seen in healthy retina. 
To mimic the case of a healthy retina, there are 30 rod photoreceptors connected to each grafted 
dendritic arbor [Behrens, et al., 2016, Tsukamoto, et al., 2013]. The synaptic locations of the rod 
photoreceptor inputs are randomly selected, and we verified that the locations of these synapses 
do not have a significant impact on the response of RC1-RodBCs (see Section 4.1.1). 

 
Figure 1: Morphology of healthy (left) and degenerated (right) RodBCs, extracted from RC1 and RPC1, 
respectively. Cell somas are depicted in blue, dendrites in black, axons in yellow and axon terminals in red 
color. 



 

3.2 Rod Photoreceptor Model 

 The rod photoreceptors are modeled using a single-compartment model with passive 
membrane properties and voltage-gated ion channels based on [Kamiyama, et al., 1996, Publio, 
et al., 2006]. An intracellular calcium concentration system is implemented as in [Usui, et al., 
1996] in order to model the calcium-dependent currents. The following six ionic currents are 
included in the model: hyperpolarization activated current (𝐼ℎ), non-inactivating potassium current 
(𝐼𝐾𝑥), delayed rectifying potassium current (𝐼𝐾𝑣), calcium current (𝐼𝐶𝑎), calcium-dependent chloride 
current (𝐼𝐶𝑙(𝐶𝑎)) and calcium-dependent potassium current (𝐼𝐾(𝐶𝑎)). The equivalent electrical circuit 
of the model is given by the following equation: 

𝐶𝑚
𝑑𝑉
𝑑𝑡

=  − 𝐼𝑙𝑒𝑎𝑘 + 𝐼ℎ + 𝐼𝐾𝑥 + 𝐼𝐾𝑣 + 𝐼𝐶𝑎 + 𝐼𝐶𝑙(𝐶𝑎) + 𝐼𝐾(𝐶𝑎)                             (1) 

where 𝐶𝑚  is the membrane capacitance, and 𝐼𝑙𝑒𝑎𝑘  is the passive membrane current. The ion 
currents are implemented by Hodgkin–Huxley equations based on conductance, gating variables, 
and reversal potentials [Hodgkin, et al., 1952]. These model parameters are tuned (Table 1 of the 
appendix) such that the model replicates the experimental recording of rod photoreceptors 
closely. 

The phototransduction process is represented by the application of photocurrent stimulus 
to the rod photoreceptors [Publio, et al., 2006]. The dark current of -40 pA is considered, and the 
simulated photocurrent is applied at the soma. The total photocurrent and the corresponding 
membrane potential at the soma of the photoreceptor are computed and presented in Fig 2(a) 
and Fig 2(b), respectively. With an increase in the amplitude of photocurrent, the hyperpolarization 
of the rod photoreceptor increases. As the photoreceptor models are single-compartment and 
identical, the membrane potential is the same for each rod photoreceptor. Even though the details 
of phototransduction at the outer segments of the rod photoreceptors are omitted, this simple 
model successfully provides the membrane potentials and currents. The simulated membrane 
potential at the rod photoreceptors is similar to that of experimental recordings [Kamiyama, et al., 
1996, Kourennyi, et al., 2004]. 

 
Figure 2: Simulated response of rod photoreceptor. Panel (a) presents simulated photocurrent waveforms 
with various current amplitudes and panel (b) displays the resulting membrane potential at the soma of rod 
photoreceptor corresponding to the photocurrents of panel (a). 



 

3.3 RodBC Model 

 Morphologically-detailed RodBCs are implemented using multi-compartment models. The 
exact 3D structure of cell somas, dendrites, axons, and axon terminals are extracted from RC1 
and RPC1. The compartmentalized model is implemented using cable theory, and each 
compartment is represented by a tapered cylinder, with radii and length computed using cell 
morphology. The biophysical behavior of RodBCs is modeled using a conductance-based model 
with passive membrane and five ionic currents [Publio, et al., 2009, Usui, et al., 1996]: voltage-
dependent potassium current (𝐼𝐾𝑣), calcium-dependent potassium current (𝐼𝐾(𝐶𝑎)), calcium current 
(𝐼𝐶𝑎), hyperpolarization-activated current (𝐼ℎ), and transient outward current (𝐼𝐴). The following 
equation represents the equivalent electrical circuit of the cell membrane: 

𝐶𝑚
𝑑𝑉
𝑑𝑡

=  − 𝐼𝑙𝑒𝑎𝑘 + 𝐼ℎ + 𝐼𝐾𝑣 + 𝐼𝐴 + 𝐼𝐶𝑎 + 𝐼𝐾(𝐶𝑎)                                       (2) 

The ionic currents are implemented using modified Hodgkin–Huxley equations, and the model 
parameters are tuned to replicate the results from experimental recordings [Oltedal, et al., 2009]. 
To validate the model, depolarizing and hyperpolarizing VClamp inputs of ±20 mV (with resting 
potential of -70 mV) are applied at the soma of RC1-RodBCs. The resulting membrane current is 
simulated and found similar to the electrophysiological recordings of [Oltedal, et al., 2009]. The 
maximum conductances and reversal potentials of ion channels are provided in Table 1 of the 
appendix. 

3.4 Rod Photoreceptor - RodBC Synapse Model 

 A mathematical model represents the graded chemical synapse between rod 
photoreceptors and RodBCs based on the synapse model of [Publio, et al., 2009] and [Mulloney, 
2003]. The synaptic current is computed from the presynaptic voltage and then injected in the 
postsynaptic neuron. The synaptic current is given by: 

𝐼𝑠𝑦𝑛(𝑡) =  𝑔𝑚𝑎𝑥 𝑆(𝑡) 𝑉(𝑡) − 𝐸𝑠𝑦𝑛                                                 (3) 

where 𝑔𝑚𝑎𝑥  is maximum conductance, 𝐸𝑠𝑦𝑛  is reversal potential and 𝑆(𝑡)  determines the 
activation level of a synapse depending on presynaptic voltage values [Publio, et al., 2009, Sikora, 
et al., 2005] and given by: 

𝑑𝑆(𝑡)
𝑑𝑡

=  
𝑆∞ −  𝑆(𝑡)

(1 − 𝑆∞) 𝜏 𝑆(𝑡)
                                                                         (4) 

 

𝑆∞ =   tanh  
𝑉𝑝𝑟𝑒 − 𝑉𝑡ℎ

𝑉𝑠𝑙𝑜𝑝𝑒
 ,      𝑖𝑓 𝑉𝑝𝑟𝑒 ≥ 𝑉𝑡ℎ

0,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                            (5)  

where 𝜏  defines the time constant of synapse activation, 𝑉𝑝𝑟𝑒  is presynaptic voltage, 𝑉𝑠𝑙𝑜𝑝𝑒 
modulates the course of synapse activation, and 𝑉𝑡ℎ  is the threshold voltage of synapse 
activation. When 𝑉𝑝𝑟𝑒 crosses 𝑉𝑡ℎ, synapse activation begins, and synaptic current starts flowing 
from presynaptic cell to postsynaptic cell. As the chemical synapse numbers (ribbon synapses, 
postsynaptic densities) are not changed at this stage of degeneration [Pfeiffer, et al., 2020b], the 
same synapse properties are used in both healthy and degenerated models. Table 2 of the 
appendix presents the parameters of the synapse model. 



 

Next, the current flow from rod photoreceptors to RodBCs is simulated. The simulated 
photocurrent is injected into rod photoreceptors, and the resulting membrane potential is 
computed. Based on presynaptic voltage, current flow from rod photoreceptors to RodBCs via 
chemical synapses is simulated. The resulting membrane potential in the RodBC is computed at 
the soma and distant axon terminal of cells from both healthy and degenerated retinas. The 
computed membrane potential response of the RC1-RodBCs due to photocurrent input is found 
to be consistent with other works [Usui, et al., 1996, Trexler, et al., 2005, Cho, et al., 2016]. 

 
Figure 3: Simulated response of RC1-RodBCs vs. RPC1-RodBCs. Panel (a)-(d) correspond to two RC1-
RodBCs (Cell IDs: 519 and 5017), whereas panel (e)-(h) correspond to two RPC1-RodBCs (Cell IDs: 822 
and 1069). Locations and number of rod photoreceptor inputs for each RodBC are shown by green color. 
Panel (b), (d), (f) and (h) present the membrane potential at the somas and distant axon terminals of the 
RodBCs shown in panel (a), (c), (e) and (g), respectively. 
 

4. Results 

After validating the models of current flow from rod photoreceptors to RodBCs, we 
performed studies to analyze the differences between RodBCs of the healthy and early-stage 
degenerated retinas. First, we compared the response of RC1-RodBCs and RPC1-RodBCs to 
the photocurrent inputs. Each RC1-RodBC receives photocurrent input from 30 rod 
photoreceptors, as RC1 database does not include the outer plexiform layer. In the case of RPC1-
RodBCs, the number and locations of their synapses with rod photoreceptors are cloned from 
RPC1. Note that some of the photoreceptors of RPC1 could not be classified between rod and 
cone photoreceptors. In order to consider the best-case scenario, these indeterminate 
photoreceptors are assumed to be rod photoreceptors in this work. The number of rod 
photoreceptor inputs (including indeterminate photoreceptors) per RPC1-RodBC varies between 
1 and 7. The photocurrent stimulus with 40 pA peak is applied at each rod photoreceptor 
connected to the RodBC. The resulting membrane potential at the soma and distant axon terminal 



 

of RodBCs are computed and presented in Fig 3. Panel (a)-(d) correspond to RC1-RodBCs and 
panel (e)-(h) correspond to RPC1-RodBCs. Fig 3(b) and (d) show the response of two RC1-
RodBCs (Cell ID: 519 and 5017), each with 30 rod photoreceptor inputs; Whereas, Fig 3(f) and 
(h) illustrate the response of two RPC1-RodBCs (Cell ID: 822 and 1069) with 7 and 1 rod 
photoreceptor inputs, respectively. RodBC morphologies along with the locations and number of 
rod photoreceptors (shown in green color) are provided on the left of each plot. The membrane 
potential at RodBCs exhibit depolarizing response: first a peak is observed, followed by a plateau, 
and finally the potential returns to the resting potential. The shape of the membrane potential 
response is similar for RodBCs from both RC1 and RPC1; however, the magnitude of 
depolarization varies. For all RC1-RodBCs, the peak membrane potential (Vmmax) is found to be 
approximately -16 mV; in contrast, the peak membrane potential of RPC1-RodBCs varies 
between -35 mV to -25 mV. For both RPC1-RodBCs and RC1-RodBCs, the membrane potential 
is higher at the soma and lower at the axon terminal. 

4.1 Response to Photocurrent Input 

4.1.1 Effect of Locations of Synapses 

 As the exact locations of the synapses from rod photoreceptors to RodBCs are not 
available in RC1, we examined how the locations of synapses impact the response of RC1-
RodBCs. For each RC1-RodBC, we simulated ten sets of random synapse locations for the 30 
rod photoreceptor inputs and observed the resulting membrane potential response. The shape of 
the membrane potential was found to be similar for all simulation sets. Additionally, for each RC1-
RodBC, the peak membrane potential is found to be approximately the same (with a maximum 
variation of 1 mV) across all simulation sets. Fig 4 summarizes the peak membrane potential of 
all sets for each RC1-RodBC in box plots with median, lower/upper quartile, and 
minimum/maximum values. These results suggest that even though the real locations of the 
synapses are not known, the results of the RC1-RodBCs are not significantly dependent upon the 
exact locations of the rod photoreceptor inputs. Note that for RC1-RodBCs, the 30 rod 
photoreceptor inputs are not widely spaced and therefore the randomly generated locations do 
not differ drastically. However, if the number of rod photoreceptor inputs is much lower (as is the 
case for RPC1-RodBCs), then the location of the rod photoreceptor inputs would potentially have 
a more substantial impact on the membrane response of the RodBCs. 

 

Figure 4: Effect of the locations of rod photoreceptors inputs on RC1-RodBCs response. For each RC1-
RodBC, ten sets of random synapse locations for the 30 rod photoreceptor inputs are simulated. The box 
plots present median, lower/upper quartile, and minimum/maximum values of peak membrane potential at 
the soma of each RC1-RodBC. 



 

4.1.2 Effect of Number of Rod Photoreceptor Inputs 

 For all RodBCs (of both volumes), the photocurrent response is similar, except for the 
difference in the magnitude of the membrane potential. We analyzed the impact of the number of 
rod photoreceptor inputs per RodBC on the observed differences in membrane potentials of 
RodBCs. Fig 5 presents the peak membrane potential with respect to the number of rod 
photoreceptor inputs. Blue filled circles represent RPC1-RodBCs whereas unfilled circles 
represent RC1-RodBCs. For all RC1-RodBCs, the number of rod photoreceptor inputs to each 
RodBC is fixed at 30, and the peak membrane potential is approximately -16 mV. In contrast, for 
RPC1-RodBCs, the number of rod photoreceptor inputs varies from 1 to 7, and peak membrane 
potential varies from -35 to -25 mV. Cells that receive a higher number of rod photoreceptor inputs 
show a higher level of depolarization and higher peak membrane potential. 

To investigate the lower peak membrane potentials in RPC1-RodBCs and determine if it 
is due to differences in rod photoreceptor input only, we simulated RC1-RodBCs with a lower 
number of rod photoreceptor inputs, as is seen in RPC1-RodBCs. This question was explored by 
simulating all four RC1-RodBCs with 1 to 7 rod photoreceptor inputs (resulting in 28 simulations) 
and comparing the simulated response with the simulated response from the eight RPC1-
RodBCs. The simulated peak membrane potential of these cells is depicted in Fig 6. The results 
suggest that a lower membrane potential can occur, even in the case of RC1-RodBCs, when 
fewer rod photoreceptor inputs are provided. The resulting membrane potentials of RC1-RodBCs 
are not substantially different from RPC1-RodBCs when the same number of rod photoreceptor 
inputs are provided, despite the morphological differences observed for RPC1-RodBCs. The 
maximum variation is found for RPC1-RodBC (Cell ID: 1232) and RC1-RodBC (Cell ID: 8749) 
with 3 rod photoreceptor inputs, which is 2.5 mV. These results suggest that the altered 
morphology of RPC1-RodBCs, at least early in retinal degeneration, does not play a significant 
role in changing the response to photocurrent input. Another observation is that for all RC1-
RodBCs, the response to photocurrent does not vary linearly with the number of rod photoreceptor 
inputs. 

 
Figure 5: Effect of the number of rod photoreceptor inputs on RodBCs response. RPC1-RodBCs receive 
input form number of rod photoreceptors between from 1 to 7. Whereas, each RC1-RodBC receive input 
from 30 rod photoreceptors. 
 



 

 
Figure 6: Comparing RC1-RodBCs and RPC1-RodBCs when number of rod photoreceptor inputs to RC1-
RodBCs are reduced to those numbers as seen in the case of RPC1-RodBCs. RPC1-RodBCs are 
simulated with their actual number (according to connectome data) of rod photoreceptor inputs. Whereas, 
number of rod photoreceptors for each RC1-RodBCs are varied from 1 to 7. 
 
4.2 Frequency Response 

 Next, we performed frequency response analyses to investigate the differences between 
RodBCs from the healthy and early-stage degenerated retina. Instead of the photocurrent 
waveform of the previous section, a sinusoidal input with a frequency range from 0.5 Hz to 100 
Hz was used to stimulate the model rod photoreceptors. For this study, we considered one RC1-
RodBC (Cell ID: 519) and two RPC1-RodBCs: one cell (Cell ID: 822) with 7 rod photoreceptor 
inputs and another cell (Cell ID: 1069) with 1 input. The simulated membrane potential and 
attenuation (in dB) were computed at the soma and distant axon terminal. The results of this 
frequency analysis are presented in Fig 7. RC1-RodBCs behave as a low pass filter, with 3 dB 
bandwidth of ≈ 8.9 Hz (see Fig 7(a)), similar to some types of ON-type ConeBCs as reported in 
[Ichinose, et al., 2014, Ichinose, et al., 2016]. RPC1-RodBCs exhibit low pass filtering, similar to 
RC1-RodBCs. However, RPC1-RodBC (Cell ID: 822) with 7 rod photoreceptor inputs shows 9.8 
dB higher attenuation and RPC1-RodBC (Cell ID: 1069) with 1 rod photoreceptor input shows 
greater than 24.8 dB higher attenuation compared to RC1-RodBCs. To investigate the impact of 
fewer rod photoreceptor inputs, we performed frequency analysis on RC1-RodBC (Cell ID: 519) 
having the same number of rod photoreceptor inputs as RPC1-RodBCs (Cell IDs: 822 and 1069). 
As shown in Fig 7(b) and 7(c), attenuation at the soma of the RPC1-RodBC is mostly similar to 
that of the RC1-RodBC with the same number of rod photoreceptor inputs. Even though the same 
number of rod photoreceptor inputs are connected to each cell, the slight difference in the 
attenuation at the soma arises due to the difference in the dendritic arbor length and the exact 
locations of the rod photoreceptor inputs. The attenuation at the axon is higher in the RPC1-
RodBC compared to the attenuation at the axon of the RC1-RodBC with the same number of rod 
photoreceptor inputs. This is most likely due to longer axonal branches of the RPC1-RodBC. The 
RC1-RodBC with 7 rod photoreceptor inputs shows around 9.9 dB more attenuation than the 
RC1-RodBC with 30 rod photoreceptor inputs. In contrast, the RC1-RodBC with 1 rod 
photoreceptor input shows 26.7 dB more attenuation compared to the same RC1-RodBC with 30 
rod photoreceptor inputs. 



 

 
Figure 7: Frequency response of RC1-RodBCs vs. RPC1-RodBCs. Panel (a) presents frequency response 
of a RC1-RodBC (Cell ID: 519) with 30 rod photoreceptor inputs. Panel (b) and (c) represent frequency 
response of RPC1-RodBCs (Cell IDs: 822 and 1069) which receive 7 and 1 rod photoreceptor inputs, 
respectively. For comparison with RC1-RodBCs, panel (b) and (c) also show frequency response of a RC1-
RodBC (Cell ID: 519) with reduced number of rod photoreceptor inputs (7 and 1, respectively). 
 
4.3 Step Input Response 

It has been shown that some types of ConeBCs show sustained response to step input, 
while other types exhibit transient response [Ichinose, et al., 2014, Ichinose, et al., 2016]. To 
examine the response of RodBCs from the RC1 and RPC1 volumes to the step input, we injected 
the simulated step photocurrent with 2 s of on time to all rod photoreceptors. All RPC1-RodBCs 
and RC1-RodBCs showed a sustained response to the step input. Examples of a RC1-RodBC 
(Cell ID: 519) and two RPC1-RodBCs (Cell IDs: 822 and 1069) are presented in Fig 8. RPC1-
RodBCs consistently show lower membrane potentials than that of RC1-RodBCs with 30 rod 
photoreceptor inputs. Similar to the frequency analysis results, the RC1-RodBC with the same 
number of rod photoreceptor inputs as the RPC1-RodBC shows a similar response, other than a 
relatively larger drop in membrane potential at the axon terminals. 

 
Figure 8: Step input response of RC1-RodBCs vs. RPC1-RodBCs. Panel (a) displays step input response 
of a RC1-RodBC (Cell ID: 519) with 30 rod photoreceptor inputs. Panel (b) and (c) show step input response 
of RPC1-RodBCs (Cell IDs: 822 and 1069) which synapse with 7 and 1 rod photoreceptors, respectively. 
In order to compare with RC1-RodBCs, panel (b) and (c) also show step input response of a RC1-RodBC 
(Cell ID: 519) with 7 and 1 rod photoreceptor inputs, respectively. 



 

5. Discussion 

We developed connectome-based computational models of current flow from rod 
photoreceptors to RodBCs in the healthy and early-stage degenerated retina. Our models of 
RodBCs are based on exact morphology and synaptic information extracted from RC1 and RPC1 
connectomes. We have made two assumptions in these computational models. First, we have 
assumed that the biophysics of the cells in degenerated tissue is the same as that of healthy 
tissue. We could not tune the model parameters specifically for RPC1-RodBCs due to the lack of 
experimental recordings from RodBCs in degenerating retinas in the literature. Secondly, the 
synapse model is the same for both degenerated and healthy retina. This assumption is justified 
by the fact that synaptic structures, such as ribbon synapses and postsynaptic densities, are 
found to be similar in both RC1 and RPC1 [Pfeiffer, et al., 2020b]. This is not the case for later 
stages of retinal degeneration. Further, a recent work on electrical stimulation of ON-type 
ConeBCs and RodBCs demonstrated that the degenerated bipolar cells responded similar to the 
healthy bipolar cells and retinal degeneration does not increase stimulation thresholds in bipolar 
cells [Walston, et al., 2018]. 

The results of this paper imply that the individual response of RodBCs does not differ 
substantially in healthy vs. early-stage degenerated retina, with significant differences arising 
primarily from the different number of photoreceptors present in each case. Even though 
individual cell responses of RC1-RodBCs and RPC1-RodBCs exhibit insignificant differences, 
there is still insufficient network data to determine whether these may have a significant 
aggregated effect at the ganglion cells of the retinal network. From the point of view of therapeutic 
devices, however, the finding that RodBCs appear to not be affected significantly in the case of 
early-stage degeneration implies that prosthetic solutions aiming at replacing the functionality of 
photoreceptors could be highly effective in the early stages of retinal degeneration diseases. 

We have previously described that some RPC1-RodBCs have their dendritic arbors 
reaching to cone photoreceptor terminals [Pfeiffer, et al., 2020b, Pfeiffer, et al., 2020c]. In future 
work, we plan to include the impact of the observed cone photoreceptor inputs to the membrane 
potential of RPC1-RodBCs in our model and investigate how that impacts the retinal network of 
RPC1. Further, as we continue to annotate the inner layer cells of RPC1, these expanded 
networks will be included in our computational models representing more complete pathways and 
networks of the healthy and degenerated retina. As further pathoconnectomes become available 
from our efforts, models will be constructed from these pathoconnectomes as well to represent 
the various stages of degenerated retina. 

6. Conclusions 

Understanding changes in the degenerated retina during progression of the disease is 
crucial for designing effective therapeutic solutions. In this work, we compared the current flow 
from rod photoreceptors to RodBCs in healthy and early-stage degenerated retina, utilizing retinal 
connectomes to construct realistic models of RodBCs and their synapses with rod photoreceptors. 
We implemented the biophysical behavior of the cells and synapses using conductance-based 
models. Our results suggest that the functional behavior of degenerated RodBCs, in the earliest 
stages of retinal degeneration, is not significantly different than those in the healthy RodBCs with 
similar input levels. However, RodBCs in early-stage degenerated retina collect input from fewer 
numbers of rod photoreceptors in comparison with healthy retina; consequently, RodBCs of the 
degenerated retina show lower membrane potentials than those of the healthy retina. Frequency 



 

response analysis suggests RodBCs in both healthy and degenerated retinas exhibit similar low 
pass filtering behavior, though there is substantial reduction in frequency-dependent impedances. 

 
Appendix 

The values of parameters of rod photoreceptors, RodBCs, and their synapse models are 
presented in Table 1 and Table 2. 

Table 1: Parameters of ionic channel models of rod photoreceptor and RodBC: 

Ionic channel 
Rod photoreceptor RodBC 

𝒈𝒎𝒂𝒙 [S/cm2] 𝒆 [mV] 𝒈𝒎𝒂𝒙 [S/cm2] 𝒆 [mV] 

𝑰𝒍𝒆𝒂𝒌 2.6 -74 7.7 -41 

𝑰𝒉 12.5 -32 31.1 -17.7 

𝑰𝑲𝒙 4.25 -74 - - 

𝑰𝑲𝒗 50 -80 0.318 -58 

𝑰𝑨 - - 5.6 -58 

𝑰𝑪𝒂 5 - 2 - 

𝑰𝑪𝒍(𝑪𝒂) 6.5 -20 - - 

𝑰𝑲(𝑪𝒂) 25 -80 1.4 -58 

 
Table 2: Parameters of synapse model: 

𝒈𝒎𝒂𝒙 [S/cm2] 𝒆 [mV] 𝝉 [ms] 𝑽𝒔𝒍𝒐𝒑𝒆 [mV] 

2.56 -45 10 10 
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Figure Legends 
 
Figure 1: Morphology of healthy (left) and degenerated (right) RodBCs, extracted from RC1 and 
RPC1, respectively. Cell somas are depicted in blue, dendrites in black, axons in yellow and axon 
terminals in red color. 
 
Figure 2: Simulated response of rod photoreceptor. Panel (a) presents simulated photocurrent 
waveforms with various current amplitudes and panel (b) displays the resulting membrane 
potential at the soma of rod photoreceptor corresponding to the photocurrents of panel (a). 
 
Figure 3: Simulated response of RC1-RodBCs vs. RPC1-RodBCs. Panel (a)-(d) correspond to 
two RC1-RodBCs (Cell IDs: 519 and 5017), whereas panel (e)-(h) correspond to two RPC1-
RodBCs (Cell IDs: 822 and 1069). Locations and number of rod photoreceptor inputs for each 
RodBC are shown by green color. Panel (b), (d), (f) and (h) present the membrane potential at 
the somas and distant axon terminals of the RodBCs shown in panel (a), (c), (e) and (g), 
respectively. 
 
Figure 4: Effect of the locations of rod photoreceptors inputs on RC1-RodBCs response. For each 
RC1-RodBC, ten sets of random synapse locations for the 30 rod photoreceptor inputs are 
simulated. The box plots present median, lower/upper quartile, and minimum/maximum values of 
peak membrane potential at the soma of each RC1-RodBC. 
 
Figure 5: Effect of the number of rod photoreceptor inputs on RodBCs response. RPC1-RodBCs 
receive input form number of rod photoreceptors between from 1 to 7. Whereas, each RC1-
RodBC receive input from 30 rod photoreceptors. 
 
Figure 6: Comparing RC1-RodBCs and RPC1-RodBCs when number of rod photoreceptor inputs 
to RC1-RodBCs are reduced to those numbers as seen in the case of RPC1-RodBCs. RPC1-
RodBCs are simulated with their actual number (according to connectome data) of rod 
photoreceptor inputs. Whereas, number of rod photoreceptors for each RC1-RodBCs are varied 
from 1 to 7. 
 
Figure 7: Frequency response of RC1-RodBCs vs. RPC1-RodBCs. Panel (a) presents frequency 
response of a RC1-RodBC (Cell ID: 519) with 30 rod photoreceptor inputs. Panel (b) and (c) 
represent frequency response of RPC1-RodBCs (Cell IDs: 822 and 1069) which receive 7 and 1 
rod photoreceptor inputs, respectively. For comparison with RC1-RodBCs, panel (b) and (c) also 
show frequency response of a RC1-RodBC (Cell ID: 519) with reduced number of rod 
photoreceptor inputs (7 and 1, respectively). 
 
Figure 8: Step input response of RC1-RodBCs vs. RPC1-RodBCs. Panel (a) displays step input 
response of a RC1-RodBC (Cell ID: 519) with 30 rod photoreceptor inputs. Panel (b) and (c) show 
step input response of RPC1-RodBCs (Cell IDs: 822 and 1069) which synapse with 7 and 1 rod 
photoreceptors, respectively. In order to compare with RC1-RodBCs, panel (b) and (c) also show 
step input response of a RC1-RodBC (Cell ID: 519) with 7 and 1 rod photoreceptor inputs, 
respectively. 
 



Healthy rod bipolar cells Degenerated rod bipolar cells
Figure1



2 4 6 8
Time [s]

(a)

-40

-30

-20

-10

0

10
Ph

ot
oc

ur
re

nt
 [p

A]

2 4 6 8
Time [s]

(b)

-80

-75

-70

-65

-60

-55

-50

-45

M
em

br
an

e 
Po

te
nt

ia
l [

m
V]

Figure2



Cell ID:519

Cell ID:5017

RC1-RodBCs and simulated response
Figure3_abcd



RPC1-RodBCs and simulated response

Cell ID:822

Cell ID:1069

Figure3_efgh



Cell ID:519 Cell ID:5017 Cell ID:7054 Cell ID:8749
RC1-RodBCs with 30 rod photoreceptor inputs

-18

-17

-16

-15

-14
Vm

m
ax

  a
t R

od
BC

 s
om

a 
[m

V]
Figure4



0 5 10 15 20 25 30
Number of rod photoreceptor inputs per RodBC

-35

-30

-25

-20

-15
Vm

m
ax

  a
t R

od
BC

 s
om

a 
[m

V]
RPC1-RodBCs
RC1-RodBCs

Figure5



0 1 2 3 4 5 6 7 8
Number of rod photoreceptor inputs per RodBC

-36

-34

-32

-30

-28

-26

Vm
m

ax
  a

t R
od

BC
 s

om
a 

[m
V]

RPC1-RodBCs
RC1-RodBC (Cell ID:519)
RC1-RodBC (Cell ID:5017)
RC1-RodBC (Cell ID:7054)
RC1-RodBC (Cell ID:8749)

Figure6



100 101 102

Freq [Hz]
(a)

-60

-50

-40

-30

-20

-10

0

At
te

nu
at

io
n 

[d
B]

RC1-RodBC (Cell ID:519, 30 rods)

RC1-RodBC: soma
RC1-RodBC: axon terminal

100 101 102

Freq [Hz]
(b)

-60

-50

-40

-30

-20

-10

0

At
te

nu
at

io
n 

[d
B]

RC1-RodBC (Cell ID:519, 7 rods) and
RPC1-RodBC (Cell ID:822, 7 rods)

RC1-RodBC: soma
RC1-RodBC: axon terminal
RPC1-RodBC: soma
RPC1-RodBC: axon terminal

100 101 102

Freq [Hz]
(c)

-60

-50

-40

-30

-20

-10

0

At
te

nu
at

io
n 

[d
B]

RC1-RodBC (Cell ID:519, 1 rod) and
RPC1-RodBC (Cell ID:1069, 1 rod)

RC1-RodBC: soma
RC1-RodBC: axon terminal
RPC1-RodBC: soma
RPC1-RodBC: axon terminal

Figure7



0 1 2 3 4 5 6
Time [s]

(a)

-38

-36

-34

-32

-30

-28

-26

M
em

br
an

e 
Po

te
nt

ia
l [

m
V]

RC1-RodBC (Cell ID:519, 30 rods)

RC1-RodBC: soma
RC1-RodBC: axon terminal

0 1 2 3 4 5 6
Time [s]

(b)

-38

-36

-34

-32

-30

-28

-26

M
em

br
an

e 
Po

te
nt

ia
l [

m
V]

RC1-RodBC (Cell ID:519, 7 rods) and
RPC1-RodBC (Cell ID:822, 7 rods)

RC1-RodBC: soma
RC1-RodBC: axon terminal
RPC1-RodBC: soma
RPC1-RodBC: axon terminal

0 1 2 3 4 5 6
Time [s]

(c)

-38

-36

-34

-32

-30

-28

-26

M
em

br
an

e 
Po

te
nt

ia
l [

m
V]

RC1-RodBC (Cell ID:519, 1 rod) and
RPC1-RodBC (Cell ID:1069, 1 rod)

RC1-RodBC: soma
RC1-RodBC: axon terminal
RPC1-RodBC: soma
RPC1-RodBC: axon terminal

Figure8


